×
25.08.2017
217.015.aacc

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, точнее к электрохимическим конденсаторам, а именно к гибридным или асимметричным конденсаторам с щелочным электролитом, и может быть использовано для изготовления неполяризуемого гидроксидноникелевого электрода данного конденсатора. Предлагаемый способ включает изготовление пористого токового коллектора, синтез активного материала, преимущественно гидроксида никеля, и заполнение пористого токового коллектора активным материалом. Согласно изобретению изготовление пористого токового коллектора электрода, синтез активного материала, преимущественно гидроксида никеля, и заполнение пористого токового коллектора активным материалом осуществляют одновременно путем электрохимической катодной обработки основы электрода, состоящей по существу из железа, в водном растворе, содержащем, по крайней мере, ионы никеля и нитрат-ионы. Электрод, изготовленный предлагаемым способом, существенно дешевле аналогов, а также обеспечивает повышение перенапряжения выделения кислорода и увеличение выхода по току при зарядке электрода в составе конденсатора, что является техническим результатом изобретения. 4 з.п. ф-лы, 3 ил., 3 пр., 1 табл.

Изобретение относится к области электротехники, точнее к электрохимическим конденсаторам, а именно к гибридным или асимметричным конденсаторам.

Изобретение может быть использовано для изготовления неполяризуемого электрода для электрохимического гибридного конденсатора с щелочным электролитом.

Поляризуемый электрод такого типа электрохимических конденсаторов выполнен из активированного углеродного материала. Другой электрод (неполяризуемый) в качестве активного материала содержит гидроксид никеля. Применение неполяризуемого электрода позволяет значительно повысить удельную энергию конденсатора по сравнению с симметричным электрохимическим конденсатором (где оба электрода поляризуемые, изготовленные из активированного углерода) с водным электролитом и достичь характеристик электрохимического конденсатора с органическим электролитом.

Электрохимические конденсаторы с неполяризуемым гидроксидноникелевым электродом могут использоваться для стартерного запуска двигателя внутреннего сгорания, в составе транспорта с гибридным приводом, на электротранспорте, в системах качественной энергии и бесперебойного питания, а также для других применений. Гидроксидноникелевые электроды, применяемые в электрохимических конденсаторах, должны обладать способностью заряжаться и разряжаться высокими плотностями тока, иметь практически неограниченный ресурс и срок службы.

В электрохимических конденсаторах обычно используют оптимизированные гидроксидноникелевые электроды известных конструкций, применяющихся в щелочных аккумуляторах, либо создают новые электродные конструкции.

Известно применение в электрохимическом конденсаторе гидроксидноникелевого электрода прессованной конструкции [Tenth International Seminar on Double Layer Capacitors and Similar Energy Storage Devices. December, 2001, Deerfield Beach, Florida]. Гидроксидноникелевый электрод изготавливают путем напрессовки на токовый коллектор активного материала с большим содержанием (16-23 мас.%) электропроводной добавки из углеграфитовых материалов [Химические источники тока: Справочник. / Под редакцией Н.В. Коровина и A.M. Скундина. - М.: Издательство МЭИ, 2003, с. 379]. Прессованные электроды имеют меньшую, по сравнению с другими конструкциями гидроксидноникелевого электрода, стоимость. Однако при высоких анодных потенциалах гидроксидноникелевого электрода (в процессе работы конденсатора) происходит постепенное окисление электропроводной добавки, что приводит к потере емкостных и мощностных характеристик электрода и, как следствие, к ограничению ресурса конденсатора с этим электродом.

Известно применение оптимизированного по активному материалу пеноникелевого гидроксидноникелевого электрода для электрохимического конденсатора с мезопористым (нанопористым) гидроксидом никеля, полученным методом трафаретного синтеза, заключающегося в химическом осаждении гидроксида никеля из водной среды гомогенного самоорганизующегося жидкокристаллического трафарета (liquid crystal template - LCT), после удаления которого получается пористая структура, содержащая каналы однородного диаметра, расположенные в гексагональной решетке [Заявка WO 2007/091076 A1. F. Coowar. An electrode for an electrochemical cell comprising mesoporous nickel hydroxide.]. Электрод получали пастированием пеноникелевого коллектора с добавлением в активный материал 22 мас.% ацетиленовой сажи. Наноархитектура гидроксида никеля обеспечивает очень хороший электронный контакт и контакт с электролитом, поэтому данный электрод обладает выдающимися мощностными характеристиками, но, как и все гидроксидноникелевые электроды, содержащие в активном материале большое количество окисляющейся углеграфитовой добавки, имеет ограничение по ресурсу.

Известно применение в электрохимическом конденсаторе оптимизированного гидроксидноникелевого электрода спеченной конструкции [WO 97/07518 по кл. H01G 9/00, 9/22]. Известный способ изготовления гидроксидноникелевого электрода электрохимического конденсатора спеченной конструкции включает: нанесение на металлическую ленту смеси порошка карбонильного никеля с порообразователем, термическую обработку в атмосфере водорода при температуре 800-960°C, заполнение спеченной никелевой губки активным материалом посредством поочередной ее пропитки в солях никеля и щелочи [Химические источники тока: Справочник. / Под редакцией Н.В. Коровина и A.M. Скундина. - М.: Издательство МЭИ, 2003, с. 378]. Для применения в электрохимическом конденсаторе электрод оптимизируют по толщине и закладываемой емкости посредством сокращения циклов пропитки пористой спеченной основы, использующейся для аккумуляторных электродов, при этом получают мощные электроды толщиной 300-400 мкм и емкостью 0,2-0,25 А⋅ч/см3. Электрод данной конструкции полностью удовлетворяет требованиям по мощностным и ресурсным характеристикам, но способ производств электродов данной конструкции довольно энерго- и материалозатратен и потому дорог.

Наиболее близким к заявляемому решению по технической сущности является способ изготовления неполяризуемого электрода электрохимического конденсатора, включающий изготовление пористого токового коллектора, синтез активного материала и заполнение пористого токового коллектора активным материалом, преимущественно гидроксидом никеля [RU №2254641 по кл. H01M 4/52, H01G 9/058]. По известному способу изготовление пористого токового коллектора, синтез активного материала и заполнение пористого токового коллектора активным материалом осуществляется одновременно путем попеременной анодной и катодной электрохимической обработки основы, состоящей по существу из никеля, в водном растворе, содержащем хлорид-ионы. По данному способу получают тонкий электрод толщиной 100-200 мкм и емкостью до 0,15 А⋅ч/см3. Гидроксидноникелевый электрод, изготовленный по данному способу, имеет меньшую стоимость по сравнению со спеченным электродом, но из-за применения никелевой основы остается значительно дороже электрода прессованной конструкции. Кроме того, небольшая величина удельной емкости ограничивает применение этого электрода даже в конденсаторах.

Изобретение направлено на решение задачи повышения емкости и снижения стоимости неполяризуемого гидроксидноникелевого электрода электрохимического гибридного конденсатора.

Технический результат изобретения, а именно повышение емкости и снижение стоимости неполяризуемого гидроксидноникелевого электрода, достигается тем, что согласно заявляемому способу изготовление пористого токового коллектора электрода, синтез активного материала, преимущественно гидроксида никеля, и заполнение пористого токового коллектора активным материалом осуществляют одновременно путем электрохимической катодной обработки основы электрода, состоящей по существу из железа, в водном растворе, содержащем, по крайней мере, ионы никеля и нитрат-ионы.

Для получения электродов по новому способу можно использовать дешевую ленту из стали в отличие от прототипа, где возможно применять только дорогостоящую никелевую ленту.

При катодной электрохимической обработке электродной основы в водных растворах солей никеля присутствующие в электролите нитрат-ионы восстанавливаются на катоде с образованием гидроксид-ионов, что приводит к защелачиванию прикатодного слоя и осаждению на основу гидроксида никеля. Согласно изобретению при проведении катодной обработки основы при плотности тока от 0,03 до 0,1 А/см2 в растворах с концентрациями ионов никеля и нитрат-ионов 0,2-2 и 0,01-0,3 г-ион/л соответственно удается добиться одновременного осаждения на основу гидроксида никеля и металлического никеля.

Металлический никель осаждается на основу в виде каркаса, который служит дополнительным токосъемом для активного материала электрода и вместе с основой образует по существу проводящий коллектор гидроксидноникелевого электрода. На фиг. 1 показан образец гидроксидноникелевого электрода с активным материалом, на фиг. 2 показан этот же образец после его обработки в кипящем растворе, содержащем сульфат аммония, аммиак, винную кислоту с концентрациями 0,7 моль/л, 6 моль/л, 0,07 моль/л соответственно, который избирательно растворяет только гидроксид никеля, при этом никелевый каркас остается целым. Образующийся металлический каркас позволяет наращивать слой активного материала на коллекторе толщиной порядка 50-100 мкм с каждой стороны и тем самым значительно увеличить емкость электрода по сравнению с прототипом, где для увеличения емкости требуется использовать никелевую ленту большей толщины. Изменяя состав электролита и плотность тока катодной электрохимической обработки, можно получать электроды с различным соотношением металлического и окисленного никеля, по сути, электроды с задаваемыми емкостными и мощностными характеристиками, для использования в составе конденсаторов для различных областей применения.

При проведении катодной электрохимической обработки в растворах с концентрацией нитрат-ионов менее 0,01 г-ион/л на основе происходит только разряд ионов никеля и осаждение металлического никеля, при концентрации нитрат-ионов более 0,3 г-ион/л происходит только восстановление нитрат-ионов и осаждение гидроксида никеля на основу. В последнем случае наблюдается практически полное осыпание слоя активного материала с основы. При проведении катодной электрохимической обработки при плотности тока менее 0,03 А/см2 наблюдается осаждение только гидроксида никеля, проведение электрохимической катодной обработки при плотности тока более 0,1 А/см2 сопровождается значительным повышением катодной поляризации и выделением водорода, что приводит к снижению выхода по току. Катодную обработку предпочтительно проводят в растворах с концентрацией ионов никеля 0,2-2 г-ион/л при температуре 15-60°C, что обеспечивает достаточную скорость процесса.

По данному способу можно получать электроды с модифицирующими добавками, вводя добавки в раствор для осаждения активного материала. Добавки равномерно распределяются в активном материале, поскольку они вводятся в активный материал одновременно с его синтезом и нанесением на основу. Согласно изобретению электроды с модифицирующими добавками (гидроксиды щелочноземельных и/или редкоземельных металлов, и/или цинка, и/или кобальта, и/или марганца, и/или алюминия, и/или их смеси) получают при катодной обработке основы в присутствии ионов щелочноземельных и редкоземельных металлов, и/или цинка, и/или кобальта, и/или марганца, и/или алюминия, и/или смеси перечисленных ионов суммарной концентрации 0,001-0,2 г-ион/л и последующей обработке в водном растворе щелочи.

Согласно предлагаемому изобретению поверхность основы электрода перед катодной обработкой предпочтительно подвергнуть механической и/или электрохимической обработке для получения пористости основы 5-50%. Пористая основа обеспечивает хорошее сцепление активного слоя с основой электрода, а также создает дополнительный объем для активного материала, т.е. увеличивает емкость электрода. При пористости основы менее 5% активный слой плохо сцеплен с основой, возможно его осыпание при эксплуатации электрода, при пористости выше 50% сама основа теряет механическую прочность и электропроводность. Механическую обработку основы проводят известными методами, такими как пескоструйная обработка, обработка металлическими щетками и т.д.

Оптимальную пористость основы (20-50%) предпочтительно получать анодной электрохимической обработкой. Основу анодно обрабатывают в растворах солей железа, близких к нейтральным (pH 3-6), в присутствии хлорид-ионов с концентрацией 0,02-1,5 г-ион/л, при этом толщина основы практически не изменяется, травление идет не по поверхности, а в глубину анода. Основа имеет регулярную пористую структуру (фиг. 3) с диаметром пор 50-150 мкм, причем размер пор уменьшается с увеличением плотности тока анодной электрохимической обработки. При концентрации хлорид-ионов менее 0,02 г-ион/л травление незначительно, на поверхности основы возникают отдельные очаги травления. При концентрации хлорид-ионов более 1,5 г-ион/л происходит равномерное травление по поверхности и глубине основы, в результате чего получается гладкая поверхность. Анодную электрохимическую обработку проводят при плотности тока от 0,04 до 0,2 А/см2, при плотности тока более 0,2 А/см2 травление прекращается, при плотности тока менее 0,04 А/см2 значительно снижается скорость процесса.

Согласно изобретению основа электрода перед катодной обработкой может быть покрыта никелем. Никелевое покрытие повышает перенапряжение выделения кислорода, что приводит к увеличению выхода по току при заряде гидроксидноникелевого электрода в составе конденсатора. Целесообразно, чтобы толщина никелевого покрытия составляла не более 1 мкм с каждой стороны основы. Увеличение толщины никелевого слоя приводит к удорожанию электрода.

Изобретение отличается возможностью получения гидроксидноникелевого электрода в виде ленты, изготовление которой предпочтительно проводить путем непрерывного технологического процесса на автоматизированной линии. Изготовление гидроксидноникелевого электрода в виде ленты на линии значительно повышает производительность и снижает трудозатраты его производства, что в конечном итоге снижает стоимость самого электрода. Непрерывный процесс изготовления гидроксидноникелевой электродной ленты реализуют следующим образом. Рулон ленты устанавливают на отдающее устройство с вертикальной осью размотки, ленту непрерывно транспортируют по операционным отсекам с помощью лентопротяжного механизма с постоянной скоростью горизонтально (лента заходит в отсеки через уплотнительные пазы вертикально по ширине), последовательно обрабатывают в каждом отсеке и наматывают на принимающую катушку. Оборудование линии и последовательные операции данного процесса даны в таблице.

В отсеках травления и осаждения активного материала предусмотрено экранирование части ленты шириной 3-33 мм под токоотвод. Линию можно компоновать новыми операционными отсеками (или убирать ненужные) в зависимости от требований технологического процесса, например добавить ванну обезжиривания для очистки стальной ленты от смазки или загрязнений.

По данному способу можно получить гидроксидноникелевые электроды толщиной 300-400 мкм, емкостью 0,2-0,25 А⋅ч/см3 с высокими мощностными и ресурсными характеристиками и невысокой стоимостью, т.е. электроды с оптимальными параметрами для применения в гибридном электрохимическом конденсаторе.

Сущность предлагаемого изобретения поясняется следующими примерами.

Пример 1. Гидроксидноникелевые электроды получали из заготовок стальной ленты размером 70×105 мм и толщиной 200 мкм. Заготовки химически обезжиривали, затем подвергали электрохимической анодной обработке при плотности тока 0,07 А/см2 в растворе состава: сульфат железа, хлорид натрия с концентрациями 0,5 г-ион/л. Травленые основы промывали водой и подвергали электрохимической катодной обработке при плотности тока 0,04 А/см2 в растворе, содержащем ионы никеля и нитрат-ионы с концентрациями 0,5 и 0,1 г-ион/л соответственно, сушили, обрабатывали в щелочи, промывали конденсатом, сушили. Время каждой из операций составляло около 20 минут. Полученные электроды имели толщину 310 мкм и емкость 0,16 А⋅ч/см3.

Пример 2. В отличие от примера 1 основу после анодной обработки никелировали, а электрохимическую катодную обработку проводили в присутствии хлорида кобальта с концентрацией 0,05 моль/л. Получили электроды емкостью 0,18 А⋅ч/см3 и толщиной 320 мкм.

Пример 3. В отличие от примера 1 и 2 процесс проводили на автоматизированной линии. Стальную лента шириной 200 мм перематывали со скоростью 18 м/ч и последовательно обрабатывали в операционных отсеках линии: ванне электрохимического травления (обработка ленты при плотности тока 0,1 А/см2 в растворе состава: сульфат железа, хлорид натрия с концентрациями 0,5 моль/л), секции холодной струйной промывки, ванне электрохимического никелирования (обработка ленты при плотности тока 0,02 А/см2 в растворе соли никеля), ванне электрохимического осаждения активного материала (обработка ленты при плотности тока 0,06 А/см2 в растворе, содержащем ионы никеля и нитрат ионы с концентрациями 0,6 и 0,1 г-ион/л соответственно), секции теплой сушки, ванне обработки щелочью, ванне теплой промывки, секции теплой сушки. Из полученной электродной ленты вырубали электроды с габаритами рабочей части 70×135 мм и токоотводом 30×30 мм. Электроды имели толщину 320 мкм и емкость 0,17 А⋅ч/см3.

Из полученных электродов собирали электрохимические конденсаторы следующей конструкции: 22 неполяризуемых гидроксидноникелевых электрода, обернутых в два слоя сепаратора из нетканого полипропилена толщиной 90 мкм, и 23 поляризуемых электрода (металлический коллектор толщиной 50 мкм с 300 мкм углеродной активированной тканью с каждой стороны коллектора). Электролитом служил раствор гидроксида калия с добавкой гидроксида лития с концентрациями 6 моль/л и 0,6 моль/л соответственно.

Закладываемая емкость неполяризуемого гидроксидноникелевого электрода в конденсаторе составила 11,3 А⋅ч, что почти в два раза больше, чем для электрохимического конденсатора таких же габаритных размеров с неполяризуемыми электродами, изготовленными по способу прототипа (5,95 А⋅ч, конденсатор с 35 гидроксидноникелевыми электродами емкостью 0,15 А⋅ч/см3 и толщиной 120 мкм). С увеличением закладываемой емкости снижается глубина циклирования неполяризуемого гидроксидноникелевого электрода в конденсаторе, что приводит к увеличению ресурса конденсатора и более стабильной работе конденсатора в составе модуля.

Были проведены ускоренные ресурсные испытания при температуре 35°C сборки из четырех конденсаторов в режиме: заряд постоянным током 150 A до напряжения 1,5 B; пауза 20 с; разряд постоянным током 150 А до напряжения 0,8 В; пауза 20 с.

Во время испытаний в течение 200000 циклов электрические характеристики конденсаторов практически не изменялись. Разбалансировки по напряжению конденсаторов в сборках при циклировании не наблюдалось.

Возможности реализации данного изобретения не исчерпываются приведенными примерами. Для изготовления гидроксидноникелевого электрода могут быть использованы традиционные гальванические операции (обезжиривания, декапирования и т.д.), рецептуры используемых электролитов также могут содержать обычные в практике добавки регулирования pH, управления величиной перенапряжения, электропроводности раствора с целью изменения морфологии осадков, изменения скорости процесса и других целей.

По предлагаемому способу можно получить гидроксидноникелевые электроды, которые по своим емкостным и мощностным характеристикам вполне пригодны для их использования в щелочных аккумуляторах (никель-кадмиевых, никель-металлогидридных, никель-цинковых, никель-железных, никель-водородных).


СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА
СПОСОБ ИЗГОТОВЛЕНИЯ НЕПОЛЯРИЗУЕМОГО ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 12.
20.06.2014
№216.012.d48c

Способ эксплуатации электрохимических конденсаторов

Изобретение относится к области электротехники и касается способа эксплуатации электрохимических конденсаторов. Предложенный способ включает подключение конденсатора к источнику тока, проведение его заряда до заданного напряжения, прекращение заряда и разряд, при этом предварительно измеряют...
Тип: Изобретение
Номер охранного документа: 0002520183
Дата охранного документа: 20.06.2014
20.10.2014
№216.012.ffdd

Батарея электрохимических конденсаторов с воздушным охлаждением

Изобретение относится к электротехнике. Технический результат заключается в повышении равномерности и эффективности охлаждения. Батарея содержит корпус, положительный и отрицательный токовыводы, систему охлаждения, устройство температурного контроля, устройство сжатия конденсаторов и, по...
Тип: Изобретение
Номер охранного документа: 0002531357
Дата охранного документа: 20.10.2014
10.03.2015
№216.013.3029

Способ производства мороженого молочного с яйцом (варианты)

Группа изобретений относится к технологии производства мороженого. Способы предусматривают подготовку рецептурных компонентов, при необходимости резку, сушку растительного сырья, указанного в вариантах способа, конвективным методом до промежуточной влажности, выдержку под давлением при...
Тип: Изобретение
Номер охранного документа: 0002543797
Дата охранного документа: 10.03.2015
10.08.2015
№216.013.6c86

Способ оперативного составления мобилизационных карт при ликвидации последствий чрезвычайных ситуаций

Изобретение относится к способам составления карт, которые могут быть использованы при ликвидации последствий чрезвычайных ситуаций (ЧС). Сущность: заранее создают базу геокодированных данных мест дислокации подразделений экстренных служб с соответствующими динамическими характеристиками...
Тип: Изобретение
Номер охранного документа: 0002559340
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c89

Система оперативного составления и использования мобилизационных карт при ликвидации последствий чрезвычайных ситуаций

Изобретение относится к системам составления карт, которые могут быть использованы при ликвидации последствий чрезвычайных ситуаций. Сущность: система включает блок (1) обработки данных о чрезвычайной ситуации, связанный с автоматизированным рабочим местом (2) диспетчера. Автоматизированное...
Тип: Изобретение
Номер охранного документа: 0002559343
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.8df3

Горячекатаная сталь для горячей штамповки

Изобретение относится к области черной металлургии, а именно к конструкционным горячекатаным сталям, предназначенным для изготовления высокопрочных стальных деталей сложной формы способом горячей штамповки, в том числе элементов конструкции автомобиля. Сталь содержит, мас.%: углерод 0,08-0,3,...
Тип: Изобретение
Номер охранного документа: 0002605034
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b3ec

Шлакообразующая смесь для непрерывной разливки стали с высоким содержанием алюминия

Изобретение относится к непрерывной разливке. Шлакообразующая смесь содержит (мас.%): углерод (5-8), фтор (6-9), окислы кальция (30-40), алюминия (10-18), кремния (5-9), натрия (9-12), лития (3-5), бора (6-10), марганца (1-2) и неизбежные примеси (остальное). Обеспечивается химическая...
Тип: Изобретение
Номер охранного документа: 0002613804
Дата охранного документа: 21.03.2017
29.12.2017
№217.015.f44f

Способ ковшовой обработки легированных сталей

Изобретение относится к металлургии и может быть использовано при производстве легированных марок сталей с содержанием углерода от 0,2 до 0,7 мас. %, в том числе с повышенной концентрацией серы 0,01-0,04 мас. %. В способе ковшовой обработки легированных сталей осуществляют ступенчатый ввод...
Тип: Изобретение
Номер охранного документа: 0002637194
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.02cc

Способ получения изделий из горячекатаного стального листа горячей штамповкой

Изобретение относится к области черной металлургии. Для изготовления изделий сложной формы разной категорией прочности с высокими показателями временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости горячекатаный стальной...
Тип: Изобретение
Номер охранного документа: 0002630082
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0308

Способ получения изделий из холоднокатаного стального листа горячей штамповкой

Изобретение относится к области черной металлургии. Для получения изделий сложной формы и обеспечения высоких показателей временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости отожженный холоднокатаный стальной лист...
Тип: Изобретение
Номер охранного документа: 0002630084
Дата охранного документа: 05.09.2017
Показаны записи 1-10 из 13.
20.06.2014
№216.012.d48c

Способ эксплуатации электрохимических конденсаторов

Изобретение относится к области электротехники и касается способа эксплуатации электрохимических конденсаторов. Предложенный способ включает подключение конденсатора к источнику тока, проведение его заряда до заданного напряжения, прекращение заряда и разряд, при этом предварительно измеряют...
Тип: Изобретение
Номер охранного документа: 0002520183
Дата охранного документа: 20.06.2014
20.10.2014
№216.012.ffdd

Батарея электрохимических конденсаторов с воздушным охлаждением

Изобретение относится к электротехнике. Технический результат заключается в повышении равномерности и эффективности охлаждения. Батарея содержит корпус, положительный и отрицательный токовыводы, систему охлаждения, устройство температурного контроля, устройство сжатия конденсаторов и, по...
Тип: Изобретение
Номер охранного документа: 0002531357
Дата охранного документа: 20.10.2014
10.03.2015
№216.013.3029

Способ производства мороженого молочного с яйцом (варианты)

Группа изобретений относится к технологии производства мороженого. Способы предусматривают подготовку рецептурных компонентов, при необходимости резку, сушку растительного сырья, указанного в вариантах способа, конвективным методом до промежуточной влажности, выдержку под давлением при...
Тип: Изобретение
Номер охранного документа: 0002543797
Дата охранного документа: 10.03.2015
13.01.2017
№217.015.8df3

Горячекатаная сталь для горячей штамповки

Изобретение относится к области черной металлургии, а именно к конструкционным горячекатаным сталям, предназначенным для изготовления высокопрочных стальных деталей сложной формы способом горячей штамповки, в том числе элементов конструкции автомобиля. Сталь содержит, мас.%: углерод 0,08-0,3,...
Тип: Изобретение
Номер охранного документа: 0002605034
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b3ec

Шлакообразующая смесь для непрерывной разливки стали с высоким содержанием алюминия

Изобретение относится к непрерывной разливке. Шлакообразующая смесь содержит (мас.%): углерод (5-8), фтор (6-9), окислы кальция (30-40), алюминия (10-18), кремния (5-9), натрия (9-12), лития (3-5), бора (6-10), марганца (1-2) и неизбежные примеси (остальное). Обеспечивается химическая...
Тип: Изобретение
Номер охранного документа: 0002613804
Дата охранного документа: 21.03.2017
29.12.2017
№217.015.f44f

Способ ковшовой обработки легированных сталей

Изобретение относится к металлургии и может быть использовано при производстве легированных марок сталей с содержанием углерода от 0,2 до 0,7 мас. %, в том числе с повышенной концентрацией серы 0,01-0,04 мас. %. В способе ковшовой обработки легированных сталей осуществляют ступенчатый ввод...
Тип: Изобретение
Номер охранного документа: 0002637194
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.02cc

Способ получения изделий из горячекатаного стального листа горячей штамповкой

Изобретение относится к области черной металлургии. Для изготовления изделий сложной формы разной категорией прочности с высокими показателями временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости горячекатаный стальной...
Тип: Изобретение
Номер охранного документа: 0002630082
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0308

Способ получения изделий из холоднокатаного стального листа горячей штамповкой

Изобретение относится к области черной металлургии. Для получения изделий сложной формы и обеспечения высоких показателей временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости отожженный холоднокатаный стальной лист...
Тип: Изобретение
Номер охранного документа: 0002630084
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.224b

Способ получения высокопрочной коррозионностойкой плакированной стали

Изобретение относится к области металлургии, к способам получения листовых плакированных сталей и может быть использовано при изготовлении сварных конструкций и оборудования для химической, нефтехимической, нефтеперерабатывающей, коксохимической и других отраслей промышленности. Заявлен способ...
Тип: Изобретение
Номер охранного документа: 0002642242
Дата охранного документа: 24.01.2018
16.01.2019
№219.016.aff5

Способ производства круглого проката из конструкционных легированных сталей для холодной объёмной штамповки крепёжных изделий

Изобретение относится к области металлургии, конкретно к способам производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката осуществляют нагрев заготовки до температуры 1080-1200°С,...
Тип: Изобретение
Номер охранного документа: 0002677038
Дата охранного документа: 15.01.2019
+ добавить свой РИД