×
25.08.2017
217.015.aaa9

Результат интеллектуальной деятельности: Способ определения кинематических параметров движения летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата. При реализации способа определения кинематических параметров движения летательного аппарата установленные на летательном аппарате устройства сканирования направляют на области, характеризующиеся максимальными значениями производных по углу и по температуре. Далее с помощью указанных сканирующих устройств измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн. На основании полученных значений спектральной плотности мощности излучения вычисляют температуру излучения в данном направлении. Далее, сравнивая полученные значения температуры со значениями температуры на предварительно занесенной в базу данных карте реликтового излучения, определяют параметры движения летательного аппарата. Технический результат изобретения заключается в расширении области применения способа, а также в увеличении точности измерений. 4 ил.

Область техники

Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата, например спутника.

Уровень техники

Известен способ определения высоты спутника по звездам, состоящий из каталога, содержащего последовательно соединенные звездный датчик, сигнальный процессор, который служит для обработки входного сигнала, полученного от звездного датчика, блок ранжирования звезд по яркости, блок идентификации звезд, к другому входу которого подключен блок памяти, в котором хранится каталог координат навигационных звезд (патент США №4680718 Method and apparatus of determining an attitude of a satellite (МПК B64G 1/36; G01C 21/24; G01S 3/78; G01S 3/782; G01S 3/785; G01S 5/16; G01V 8/10; G01S 3/786; (IPC1-7): G06F 7/56, опубл. 14.07.1987)).

Недостаток его состоит в том, что устройство по способу неспособно вычислять линейную скорость и ускорение спутника.

Известно устройство для определения ориентации аппарата по звездам, состоящее из блока памяти каталога навигационных звезд, звездного датчика, сигнального процессора, блока ранжирования сигнала по яркости, блока идентификации звезд, блока определения координат ориентации, блока памяти каталога перекрывающихся секторов, блока сравнения предварительных координат и блока выборки звезд и формирования рабочего каталога (полезная модель РФ №23979 УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ПО ЗВЕЗДАМ (МПК G01J 1/20, G01C 21/24, опубл. 20.07.2002).

Недостаток его состоит в том, в нем также отсутствует возможность вычисления линейной скорости и ускорения летательного аппарата.

Наиболее близким техническим решением является метод обнаружения и определения пространственного местоположения перемещающихся воздушных объектов искусственного происхождения посредством измерения интенсивности изотропного реликтового излучения, включающий процесс последовательного измерения интенсивности изотропного реликтового излучения, приходящего в точку произведения метода, путем последовательного сканирования измерительными приборами небесной сферы, настроенным на частоту изотропного реликтового излучения (изобретение РФ №2563320 МЕТОД ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО МЕСТОПОЛОЖЕНИЯ ПЕРЕМЕЩАЮЩИХСЯ ВОЗДУШНЫХ ОБЪЕКТОВ ИСКУССТВЕННОГО ПРОИСХОЖДЕНИЯ ПОСРЕДСТВОМ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ ИЗОТРОПНОГО КОСМИЧЕСКОГО РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, МПК: G01C 21/02, опубл. 20.09.2015).

Недостатки его заключаются в том, что метод применим только в воздушном пространстве, для определения координат и вектора скорости воздушных объектов необходимо использовать несколько измерительных приборов, которые разнесены пространственно, метод может быть реализуем только в условиях прямой видимости воздушного объекта со стороны измерительных приборов, метод в значительной степени зависит от состояния атмосферы и не работает в условиях ливневого дождя, обильного снегопада, в области грозовых туч и при искусственной засветке атмосферы.

Раскрытие изобретения

Задача предлагаемого изобретения заключается в расширении области применимости способа (метода) с использованием реликтового излучения и уменьшении факторов, оказывающих возможное влияние на точность способа.

Задача решается и технический результат достигается тем, что способ определения кинематических параметров движения летательного аппарата включает в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта. При этом для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

При реализации способа определения кинематических параметров движения летательного аппарата используют установленные на борту ЛА измерители спектральной плотности мощности, установленные в устройстве сканирования в заданном угловом диапазоне, управляемые блоками управления, блоки вычисления температуры реликтового излучения, вычислитель и базу данных. База данных хранит в себе измеренную карту реликтового излучения. Сопоставление данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе, позволяют вычислять кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

Перечень фигур

На фиг. 1 представлена структурная блок-схема устройства, реализующего способ определения кинематических параметров движения летательного аппарата.

На фиг. 2 представлен график точности в определении угловой координаты летательного аппарата, в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 3 представлен график точности определения линейной скорости летательного аппарата в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 4 представлена модель дипольной составляющей реликтового излучения, представленная в виде линий уровня. Отмечены три направления датчиков спектральной плотности мощности, для которых ведется расчет точности способа (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Осуществление изобретения

Способ определения кинематических параметров движения летательного аппарата осуществляется в устройстве, состоящим из n каналов, в состав которых входят: n измерителей спектральной плотности мощности на различных длинах волн 1.1, 1.2…1.n, но не меньше трех, устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n, блоки вычисления температуры реликтового излучения 3.1, 3.2…3.n, блоки управления сканирующими устройствами 6.1, 6.2…6.n, базы данных 4, вычислитель 5.

Предлагаемый способ реализуют следующим образом.

Устройство, реализующее способ определения кинематических параметров летательного аппарата на Земной поверхности, настраивают следующим образом: устройства сканирования направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре. Таким образом обеспечивается минимальная ошибка в определении углового положения летательного аппарата, угловой скорости и линейной скорости. Конкретная настройка зависит от текущего положения Земли и погодных условий. Спектральная плотность мощности реликтового излучения, измеренная на разных длинах волн, с помощью 1.1, 1.2…1.n, оси которых располагаются не в одной плоскости, поступает на вход вычислителей 3.1, 3.2…3.n. Вычислители 3.1, 3.2…3.n преобразуют полученные на разных длинах волн значения к кривой изменения спектральной плотности мощности от длины волны, соответствующей излучению абсолютно черного тела с известной температурой. На основе полученной кривой на выходе 3.1, 3.2…3.n формируются значения температур реликтового излучения в заданном направлении. Вычисленные значения температур реликтового излучения поступают на вычислитель 5. На основе сравнения данных, пришедших с 3.1, 3.2…3.n, и данных, хранящихся в базе данных 4, формируются угловые координаты летательного аппарата и радиус-вектор в земной системе координат. Скорость летательного аппарата вычисляется на основе сравнения температуры реликтового излучения на карте и измеренной температурой на выходе вычислителей 3.1, 3.2…3.n. В случае покоя летательного аппарата измеренные температуры и температуры на карте будут равны. В случае движения летательного аппарата в каком-либо направлении изменение температуры в этом направлении будет пропорционально скорости движения. Ускорения определяют как изменение скоростей во времени. Вычислитель 5 имеет два выхода: на одном выходе формируется вектор кинематических параметров летательного аппарата, на другом выходе - управляющее воздействие, поступающее на вход блоков управления сканирующими устройствами 6.1, 6.2…6.n. Блоки управления сканирующими устройствами 6.1, 6.2…6.n осуществляют поворот устройств сканирования в заданном угловом диапазоне 2.1, 2.2…2.n согласно требуемой программе по минимизации сигнала рассогласования между текущей ориентацией измерителей спектральной плотности мощности и их ориентацией, при котором ошибка измерения углового положения летательного аппарата минимальна. Устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n содержат в себе измерители спектральной плотности мощности 1.1, 1.2…1.n.

В основе способа определения кинематических параметров движения летательного аппарата лежит свойство реликтового излучения - дипольная анизотропия. Это свойство интерпретируется как следствие эффекта Доплера, возникающего при движении Солнечной системы относительно реликтового фона со скоростью примерно 370 км/с в сторону созвездия Льва [1]. Способ позволяет однозначно определить угловое положение, скорость, ускорение и радиус-вектор аппарата в пространстве на основе измерений спектральной плотности мощности по нескольким направлениям. Спектр реликтового излучения схож со спектром излучения абсолютно черного тела. В настоящее время определение температуры T+dT реликтового излучения в выбранном направлении возможно с точностью dT~10-6, а величина, при которой заметна дипольная анизотропия излучения, вносит свой вклад T'~10-3 [2], то есть существенное отличие на 3 порядка.

Температура излучения в выбранном направлении для тела, движущегося со скоростью υ, равняется:

,

где T - температура в выбранном направлении, T0 - температура реликтового излучения в ИСО, которая покоится относительно излучения, θ - угол между вектором υ и направлением наблюдения,

Возможную точность определения угла dθ можно рассчитать с учетом того, что точность измерения температуры реликтового излучения на данный момент составляет dT=0.000001 K.

Для определения dθ найдем производную Tabs по θ:

Выразим dθ:

Скорость движения Солнца в направлении созвездия Льва составляет υ=370 км/с, T0=2.72548 К, а угол θ=(0; 360)°

Полученная зависимость точности определения угла dθ от θ имеет вид, представленный на фиг. 2.

Минимальная ошибка определения углового положения вдоль одного направления dθmin=58,2ʺ достигается, если θ=90°, 270°. В интервале θ=(5,8…174,2)°∧(185,8…354,2)° ошибка не превышает 10dθmin

Для нахождения ошибки определения скорости летательного аппарата dυ найдем

Отсюда dv:

Полученная зависимость dv от θ имеет вид, представленный на фиг. 3.

Минимальная ошибка определения скорости dvmin=0.11 км/с достигается, если θ=0°, 180°, 360°. В интервале θ=(0…84,38)°∧(95,62…264,38)°∧(274,38°…360)° ошибка не превышает 10dvmin.

Для оценки точности предлагаемого способа было произведено моделирование работы реализующего способ устройства с тремя датчиками спектральной плотности мощности. В качестве модели дипольной составляющей реликтового излучения была взята модель, предложенная в [3].

В галактических координатах распределение дипольной анизотропии характеризуется тремя амплитудами ΔTx, ΔTy и ΔTz:

ΔT(l,b)=ΔTxcoslcosb+ΔTysinlcosb+ΔTzsinb,

l - галактическая широта, b - галактическая долгота (галактическая система координат)

Результирующие температуры реликтового излучения, воссозданные по этой модели, представлены в виде линий уровня на Фиг. 4. По осям отложена галактическая широта, долгота, для каждой линии уровня характерна температура в мкК, обозначенная на графике.

Для расчета точности устройства, реализующего предлагаемый способ, выберем три направления на карте реликтового излучения (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Суммарная погрешность в позиционировании ЛА будет равна сумме погрешностей по каждому из направлений. Погрешности в определении позиционирования ЛА для каждого из этих направлений:

Δ1=0,02°,

Δ2=0,026°,

Δ3=0,022°

Полученная точность Δ=2'22ʺ не является предельной для предлагаемого способа, ввиду выбора трех направлений неоптимальным образом. Также точность предлагаемого способа может быть увеличена использованием большего количества - n троек датчиков спектральной плотности мощности реликтового излучения.

Список использованной литературы

[1] Чернин А.Д. Звезды и физика, М.: Наука, 1984, с. 152-153.

[2] Насельский П.Д., Новиков Д.И., Новиков И.Д. Реликтовое излучение Вселенной. - М.: Наука, 2003. - 390 с.

[3] Kogut A., Banday A.J., Bennett C.L. et al, 1996а. ApJ. V. 470. P. 653.

[4] Kogut A., Banday A.J., Bennett C.L. et al. II 1996b. ApJ. V. 464. L29.

Способ определения кинематических параметров движения летательного аппарата, включающий в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта, отличающийся тем, что для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Источник поступления информации: Роспатент

Показаны записи 31-40 из 50.
10.04.2016
№216.015.3132

Посадочное устройство с краш-опорами для космического аппарата

Изобретение относится к области космической техники. Посадочное устройство содержит, по крайней мере, одну посадочную опору, включающую в себя центральную телескопическую стойку. Стойка снабжена узлом крепления к корпусу космического аппарата. На конце телескопического штока закреплена опорная...
Тип: Изобретение
Номер охранного документа: 0002580601
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31b4

Безлюфтовый планетарно-цевочный редуктор

Изобретение относится к машиностроению, а именно к приводам машин. Планетарно-цевочный редуктор состоит из быстроходной ступени, в которой центральное колесо с полушевронами 2 и 3, имеющими внешние эвольвентные зубья, зацепляется с сателлитами 5 с полушевронами 4 и 5, консольно закрепленными на...
Тип: Изобретение
Номер охранного документа: 0002580598
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4751

Гемо- плазмо- сорбент, способы его изготовления (варианты) и применения

Изобретение относится к сорбентам на основе гранулированных активированных углей, модифицированных полипирролом, используемых в медицине. Предложено два электорохимических варианта способа изготовления сорбента. Согласно первому варианту способ осуществляют в водном электролите с додецилсульфат...
Тип: Изобретение
Номер охранного документа: 0002585781
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.51ca

Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах, предназначенных для формирования высокоскоростных компактных элементов, используемых при экспериментальном исследовании поведения материалов в условиях...
Тип: Изобретение
Номер охранного документа: 0002596168
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.553c

Способ сверления волокнистых полимерных композиционных материалов и инструмент для его осуществления

Способ включает выполнение отверстия лезвийным инструментом, преимущественно, спиральным сверлом. Затем обработанную поверхность отверстия подвергают кратковременному нагреву до размягчения приповерхностного слоя связующего и одновременно к обработанной поверхности прикладывают равномерное...
Тип: Изобретение
Номер охранного документа: 0002593559
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5801

Волновая передача дискретного движения

Изобретение относится к машиностроению и может быть использовано в механических устройствах, реализующих дискретные законы движения при непрерывном движении ведущего. Волновая передача дискретного движения содержит гибкое колесо, расположенный внутри него генератор волн и жесткое колесо,...
Тип: Изобретение
Номер охранного документа: 0002588560
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b50

Волоконно-оптическое устройство большой протяженности с источником малой мощности для регистрации вибрационных воздействий

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в системах мониторинга протяженных и крупногабаритных объектов, и может быть использовано для мониторинга состояния судна и элементов его конструкции (баки и т.д.) путем акустоэмиссионной диагностики, детектируя...
Тип: Изобретение
Номер охранного документа: 0002589492
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8098

Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов

Изобретение относится к области ядерной энергетики и касается, в частности, вопросов обращения с жидкими радиоактивными отходами, образующимися при работе атомных электростанций. Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов содержит...
Тип: Изобретение
Номер охранного документа: 0002602090
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.85a5

Защитное устройство для локализации взрывоопасных предметов

Изобретение относится к области специальной техники и может быть использовано для подавления осколочного и фугасного действий взрывов, происходящих в результате террористических или криминальных актов. Защитное устройство (ЗУ) для локализации взрывоопасных предметов с жесткими полыми стенками и...
Тип: Изобретение
Номер охранного документа: 0002603114
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9d2d

Способ дистанционного трассового обнаружения участков растительности в стрессовом состоянии

Изобретение относится к измерительной технике и может быть использовано для дистанционного оперативного мониторинга состояния растительности по трассе полета авиационного носителя. При реализации дистанционного способа обнаружения участков растительности в стрессовом состоянии возбуждают...
Тип: Изобретение
Номер охранного документа: 0002610521
Дата охранного документа: 13.02.2017
Показаны записи 31-40 из 50.
10.04.2016
№216.015.3132

Посадочное устройство с краш-опорами для космического аппарата

Изобретение относится к области космической техники. Посадочное устройство содержит, по крайней мере, одну посадочную опору, включающую в себя центральную телескопическую стойку. Стойка снабжена узлом крепления к корпусу космического аппарата. На конце телескопического штока закреплена опорная...
Тип: Изобретение
Номер охранного документа: 0002580601
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31b4

Безлюфтовый планетарно-цевочный редуктор

Изобретение относится к машиностроению, а именно к приводам машин. Планетарно-цевочный редуктор состоит из быстроходной ступени, в которой центральное колесо с полушевронами 2 и 3, имеющими внешние эвольвентные зубья, зацепляется с сателлитами 5 с полушевронами 4 и 5, консольно закрепленными на...
Тип: Изобретение
Номер охранного документа: 0002580598
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4751

Гемо- плазмо- сорбент, способы его изготовления (варианты) и применения

Изобретение относится к сорбентам на основе гранулированных активированных углей, модифицированных полипирролом, используемых в медицине. Предложено два электорохимических варианта способа изготовления сорбента. Согласно первому варианту способ осуществляют в водном электролите с додецилсульфат...
Тип: Изобретение
Номер охранного документа: 0002585781
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.51ca

Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов

Изобретение относится к области ракетно-космической и оборонной техники и может быть использовано в различных кумулятивных устройствах, предназначенных для формирования высокоскоростных компактных элементов, используемых при экспериментальном исследовании поведения материалов в условиях...
Тип: Изобретение
Номер охранного документа: 0002596168
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.553c

Способ сверления волокнистых полимерных композиционных материалов и инструмент для его осуществления

Способ включает выполнение отверстия лезвийным инструментом, преимущественно, спиральным сверлом. Затем обработанную поверхность отверстия подвергают кратковременному нагреву до размягчения приповерхностного слоя связующего и одновременно к обработанной поверхности прикладывают равномерное...
Тип: Изобретение
Номер охранного документа: 0002593559
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5801

Волновая передача дискретного движения

Изобретение относится к машиностроению и может быть использовано в механических устройствах, реализующих дискретные законы движения при непрерывном движении ведущего. Волновая передача дискретного движения содержит гибкое колесо, расположенный внутри него генератор волн и жесткое колесо,...
Тип: Изобретение
Номер охранного документа: 0002588560
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5b50

Волоконно-оптическое устройство большой протяженности с источником малой мощности для регистрации вибрационных воздействий

Изобретение относится к волоконно-оптическим сенсорным системам, используемым в системах мониторинга протяженных и крупногабаритных объектов, и может быть использовано для мониторинга состояния судна и элементов его конструкции (баки и т.д.) путем акустоэмиссионной диагностики, детектируя...
Тип: Изобретение
Номер охранного документа: 0002589492
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8098

Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов

Изобретение относится к области ядерной энергетики и касается, в частности, вопросов обращения с жидкими радиоактивными отходами, образующимися при работе атомных электростанций. Устройство для окислительной деструкции металлоорганических комплексов жидких радиоактивных отходов содержит...
Тип: Изобретение
Номер охранного документа: 0002602090
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.85a5

Защитное устройство для локализации взрывоопасных предметов

Изобретение относится к области специальной техники и может быть использовано для подавления осколочного и фугасного действий взрывов, происходящих в результате террористических или криминальных актов. Защитное устройство (ЗУ) для локализации взрывоопасных предметов с жесткими полыми стенками и...
Тип: Изобретение
Номер охранного документа: 0002603114
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9d2d

Способ дистанционного трассового обнаружения участков растительности в стрессовом состоянии

Изобретение относится к измерительной технике и может быть использовано для дистанционного оперативного мониторинга состояния растительности по трассе полета авиационного носителя. При реализации дистанционного способа обнаружения участков растительности в стрессовом состоянии возбуждают...
Тип: Изобретение
Номер охранного документа: 0002610521
Дата охранного документа: 13.02.2017
+ добавить свой РИД