×
25.08.2017
217.015.aaa9

Результат интеллектуальной деятельности: Способ определения кинематических параметров движения летательного аппарата

Вид РИД

Изобретение

Аннотация: Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата. При реализации способа определения кинематических параметров движения летательного аппарата установленные на летательном аппарате устройства сканирования направляют на области, характеризующиеся максимальными значениями производных по углу и по температуре. Далее с помощью указанных сканирующих устройств измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн. На основании полученных значений спектральной плотности мощности излучения вычисляют температуру излучения в данном направлении. Далее, сравнивая полученные значения температуры со значениями температуры на предварительно занесенной в базу данных карте реликтового излучения, определяют параметры движения летательного аппарата. Технический результат изобретения заключается в расширении области применения способа, а также в увеличении точности измерений. 4 ил.

Область техники

Изобретение относится к области навигации и может быть использовано для определения угловых и пространственных координат, а также скоростей и ускорений летательного аппарата, например спутника.

Уровень техники

Известен способ определения высоты спутника по звездам, состоящий из каталога, содержащего последовательно соединенные звездный датчик, сигнальный процессор, который служит для обработки входного сигнала, полученного от звездного датчика, блок ранжирования звезд по яркости, блок идентификации звезд, к другому входу которого подключен блок памяти, в котором хранится каталог координат навигационных звезд (патент США №4680718 Method and apparatus of determining an attitude of a satellite (МПК B64G 1/36; G01C 21/24; G01S 3/78; G01S 3/782; G01S 3/785; G01S 5/16; G01V 8/10; G01S 3/786; (IPC1-7): G06F 7/56, опубл. 14.07.1987)).

Недостаток его состоит в том, что устройство по способу неспособно вычислять линейную скорость и ускорение спутника.

Известно устройство для определения ориентации аппарата по звездам, состоящее из блока памяти каталога навигационных звезд, звездного датчика, сигнального процессора, блока ранжирования сигнала по яркости, блока идентификации звезд, блока определения координат ориентации, блока памяти каталога перекрывающихся секторов, блока сравнения предварительных координат и блока выборки звезд и формирования рабочего каталога (полезная модель РФ №23979 УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА ПО ЗВЕЗДАМ (МПК G01J 1/20, G01C 21/24, опубл. 20.07.2002).

Недостаток его состоит в том, в нем также отсутствует возможность вычисления линейной скорости и ускорения летательного аппарата.

Наиболее близким техническим решением является метод обнаружения и определения пространственного местоположения перемещающихся воздушных объектов искусственного происхождения посредством измерения интенсивности изотропного реликтового излучения, включающий процесс последовательного измерения интенсивности изотропного реликтового излучения, приходящего в точку произведения метода, путем последовательного сканирования измерительными приборами небесной сферы, настроенным на частоту изотропного реликтового излучения (изобретение РФ №2563320 МЕТОД ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО МЕСТОПОЛОЖЕНИЯ ПЕРЕМЕЩАЮЩИХСЯ ВОЗДУШНЫХ ОБЪЕКТОВ ИСКУССТВЕННОГО ПРОИСХОЖДЕНИЯ ПОСРЕДСТВОМ ИЗМЕРЕНИЯ ИНТЕНСИВНОСТИ ИЗОТРОПНОГО КОСМИЧЕСКОГО РЕЛИКТОВОГО ИЗЛУЧЕНИЯ, МПК: G01C 21/02, опубл. 20.09.2015).

Недостатки его заключаются в том, что метод применим только в воздушном пространстве, для определения координат и вектора скорости воздушных объектов необходимо использовать несколько измерительных приборов, которые разнесены пространственно, метод может быть реализуем только в условиях прямой видимости воздушного объекта со стороны измерительных приборов, метод в значительной степени зависит от состояния атмосферы и не работает в условиях ливневого дождя, обильного снегопада, в области грозовых туч и при искусственной засветке атмосферы.

Раскрытие изобретения

Задача предлагаемого изобретения заключается в расширении области применимости способа (метода) с использованием реликтового излучения и уменьшении факторов, оказывающих возможное влияние на точность способа.

Задача решается и технический результат достигается тем, что способ определения кинематических параметров движения летательного аппарата включает в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта. При этом для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

При реализации способа определения кинематических параметров движения летательного аппарата используют установленные на борту ЛА измерители спектральной плотности мощности, установленные в устройстве сканирования в заданном угловом диапазоне, управляемые блоками управления, блоки вычисления температуры реликтового излучения, вычислитель и базу данных. База данных хранит в себе измеренную карту реликтового излучения. Сопоставление данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе, позволяют вычислять кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.

Перечень фигур

На фиг. 1 представлена структурная блок-схема устройства, реализующего способ определения кинематических параметров движения летательного аппарата.

На фиг. 2 представлен график точности в определении угловой координаты летательного аппарата, в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 3 представлен график точности определения линейной скорости летательного аппарата в зависимости от направления измерителя спектральной плотности мощности.

На фиг. 4 представлена модель дипольной составляющей реликтового излучения, представленная в виде линий уровня. Отмечены три направления датчиков спектральной плотности мощности, для которых ведется расчет точности способа (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Осуществление изобретения

Способ определения кинематических параметров движения летательного аппарата осуществляется в устройстве, состоящим из n каналов, в состав которых входят: n измерителей спектральной плотности мощности на различных длинах волн 1.1, 1.2…1.n, но не меньше трех, устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n, блоки вычисления температуры реликтового излучения 3.1, 3.2…3.n, блоки управления сканирующими устройствами 6.1, 6.2…6.n, базы данных 4, вычислитель 5.

Предлагаемый способ реализуют следующим образом.

Устройство, реализующее способ определения кинематических параметров летательного аппарата на Земной поверхности, настраивают следующим образом: устройства сканирования направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре. Таким образом обеспечивается минимальная ошибка в определении углового положения летательного аппарата, угловой скорости и линейной скорости. Конкретная настройка зависит от текущего положения Земли и погодных условий. Спектральная плотность мощности реликтового излучения, измеренная на разных длинах волн, с помощью 1.1, 1.2…1.n, оси которых располагаются не в одной плоскости, поступает на вход вычислителей 3.1, 3.2…3.n. Вычислители 3.1, 3.2…3.n преобразуют полученные на разных длинах волн значения к кривой изменения спектральной плотности мощности от длины волны, соответствующей излучению абсолютно черного тела с известной температурой. На основе полученной кривой на выходе 3.1, 3.2…3.n формируются значения температур реликтового излучения в заданном направлении. Вычисленные значения температур реликтового излучения поступают на вычислитель 5. На основе сравнения данных, пришедших с 3.1, 3.2…3.n, и данных, хранящихся в базе данных 4, формируются угловые координаты летательного аппарата и радиус-вектор в земной системе координат. Скорость летательного аппарата вычисляется на основе сравнения температуры реликтового излучения на карте и измеренной температурой на выходе вычислителей 3.1, 3.2…3.n. В случае покоя летательного аппарата измеренные температуры и температуры на карте будут равны. В случае движения летательного аппарата в каком-либо направлении изменение температуры в этом направлении будет пропорционально скорости движения. Ускорения определяют как изменение скоростей во времени. Вычислитель 5 имеет два выхода: на одном выходе формируется вектор кинематических параметров летательного аппарата, на другом выходе - управляющее воздействие, поступающее на вход блоков управления сканирующими устройствами 6.1, 6.2…6.n. Блоки управления сканирующими устройствами 6.1, 6.2…6.n осуществляют поворот устройств сканирования в заданном угловом диапазоне 2.1, 2.2…2.n согласно требуемой программе по минимизации сигнала рассогласования между текущей ориентацией измерителей спектральной плотности мощности и их ориентацией, при котором ошибка измерения углового положения летательного аппарата минимальна. Устройства сканирования в заданном угловом диапазоне 2.1, 2.2…2.n содержат в себе измерители спектральной плотности мощности 1.1, 1.2…1.n.

В основе способа определения кинематических параметров движения летательного аппарата лежит свойство реликтового излучения - дипольная анизотропия. Это свойство интерпретируется как следствие эффекта Доплера, возникающего при движении Солнечной системы относительно реликтового фона со скоростью примерно 370 км/с в сторону созвездия Льва [1]. Способ позволяет однозначно определить угловое положение, скорость, ускорение и радиус-вектор аппарата в пространстве на основе измерений спектральной плотности мощности по нескольким направлениям. Спектр реликтового излучения схож со спектром излучения абсолютно черного тела. В настоящее время определение температуры T+dT реликтового излучения в выбранном направлении возможно с точностью dT~10-6, а величина, при которой заметна дипольная анизотропия излучения, вносит свой вклад T'~10-3 [2], то есть существенное отличие на 3 порядка.

Температура излучения в выбранном направлении для тела, движущегося со скоростью υ, равняется:

,

где T - температура в выбранном направлении, T0 - температура реликтового излучения в ИСО, которая покоится относительно излучения, θ - угол между вектором υ и направлением наблюдения,

Возможную точность определения угла dθ можно рассчитать с учетом того, что точность измерения температуры реликтового излучения на данный момент составляет dT=0.000001 K.

Для определения dθ найдем производную Tabs по θ:

Выразим dθ:

Скорость движения Солнца в направлении созвездия Льва составляет υ=370 км/с, T0=2.72548 К, а угол θ=(0; 360)°

Полученная зависимость точности определения угла dθ от θ имеет вид, представленный на фиг. 2.

Минимальная ошибка определения углового положения вдоль одного направления dθmin=58,2ʺ достигается, если θ=90°, 270°. В интервале θ=(5,8…174,2)°∧(185,8…354,2)° ошибка не превышает 10dθmin

Для нахождения ошибки определения скорости летательного аппарата dυ найдем

Отсюда dv:

Полученная зависимость dv от θ имеет вид, представленный на фиг. 3.

Минимальная ошибка определения скорости dvmin=0.11 км/с достигается, если θ=0°, 180°, 360°. В интервале θ=(0…84,38)°∧(95,62…264,38)°∧(274,38°…360)° ошибка не превышает 10dvmin.

Для оценки точности предлагаемого способа было произведено моделирование работы реализующего способ устройства с тремя датчиками спектральной плотности мощности. В качестве модели дипольной составляющей реликтового излучения была взята модель, предложенная в [3].

В галактических координатах распределение дипольной анизотропии характеризуется тремя амплитудами ΔTx, ΔTy и ΔTz:

ΔT(l,b)=ΔTxcoslcosb+ΔTysinlcosb+ΔTzsinb,

l - галактическая широта, b - галактическая долгота (галактическая система координат)

Результирующие температуры реликтового излучения, воссозданные по этой модели, представлены в виде линий уровня на Фиг. 4. По осям отложена галактическая широта, долгота, для каждой линии уровня характерна температура в мкК, обозначенная на графике.

Для расчета точности устройства, реализующего предлагаемый способ, выберем три направления на карте реликтового излучения (b1=41°, l1=131°; b2=49°, l2=179°; b3=-11°, l1=119°).

Суммарная погрешность в позиционировании ЛА будет равна сумме погрешностей по каждому из направлений. Погрешности в определении позиционирования ЛА для каждого из этих направлений:

Δ1=0,02°,

Δ2=0,026°,

Δ3=0,022°

Полученная точность Δ=2'22ʺ не является предельной для предлагаемого способа, ввиду выбора трех направлений неоптимальным образом. Также точность предлагаемого способа может быть увеличена использованием большего количества - n троек датчиков спектральной плотности мощности реликтового излучения.

Список использованной литературы

[1] Чернин А.Д. Звезды и физика, М.: Наука, 1984, с. 152-153.

[2] Насельский П.Д., Новиков Д.И., Новиков И.Д. Реликтовое излучение Вселенной. - М.: Наука, 2003. - 390 с.

[3] Kogut A., Banday A.J., Bennett C.L. et al, 1996а. ApJ. V. 470. P. 653.

[4] Kogut A., Banday A.J., Bennett C.L. et al. II 1996b. ApJ. V. 464. L29.

Способ определения кинематических параметров движения летательного аппарата, включающий в себя процедуру позиционирования реализующего способ устройства регистрации, процедуру измерения интенсивности реликтового излучения, вычисление координат движущегося объекта, отличающийся тем, что для определения кинематических параметров движения летательного аппарата, а именно: ориентации, положения, скорости и ускорения летательного аппарата в пространстве, вводят базу данных, хранящую в себе карту реликтового излучения и модель движения Земли, измерительные приборы устанавливают на летательном аппарате, устройства сканирования для определения температуры в заданном угловом диапазоне направляют в области пространства, где на карте реликтового излучения максимальны производные по углу и по температуре, измеряют спектральные плотности мощности излучения не менее чем в трех направлениях и не менее чем в трех спектральных диапазонах длин волн, вычисляют температуры реликтового излучения и при сопоставлении данных, получаемых с устройств вычисления температуры реликтового излучения с данными, содержащимися в базе данных, определяют кинематические параметры движения летательного аппарата: угловые координаты, скорости и ускорения, а также линейные скорости и ускорения.
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Способ определения кинематических параметров движения летательного аппарата
Источник поступления информации: Роспатент

Показаны записи 11-20 из 50.
27.03.2015
№216.013.361c

Устройство управления параметрами оптического излучения

Изобретение относится к области оптики и касается устройства управления параметрами лазерного излучения. Устройство включает в себя источник лазерного излучения, поляризатор, вращающийся оптический элемент и цепь обратной связи. Цепь обратной связи состоит из светоделительной пластины,...
Тип: Изобретение
Номер охранного документа: 0002545336
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3cff

Способ получения наномодифицированного термопласта

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например,...
Тип: Изобретение
Номер охранного документа: 0002547103
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4651

Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов

Изобретение относится к боеприпасам, в частности к комбинированной кумулятивной облицовке для формирования высокоскоростных компактных элементов. Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме полусферы и...
Тип: Изобретение
Номер охранного документа: 0002549505
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c91

Способ определения характеристик наложившихся друг на друга радиосигналов одной частоты

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных...
Тип: Изобретение
Номер охранного документа: 0002551115
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d81

Способ определения координат источника радиоизлучения

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности и уменьшение времени определения координат источника радиоизлучения (ИРИ). Указанный результат достигается за счет использования при определении пеленгов ИРИ...
Тип: Изобретение
Номер охранного документа: 0002551355
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6132

Каркас конструкции антенного рефлектора из полимерного композиционного материала

Изобретение относится к космической технике, в частности к созданию прецизионных антенных рефлекторов с высокоточными отражающими поверхностями сложной геометрии, искривленными в двух измерениях, для эксплуатации в условиях космического орбитального полета. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002556424
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6e3e

Способ дистанционного обеззараживания и обезвреживания удаленных объектов и устройство для его осуществления

Группа изобретений относится к области санитарии и может быть использована для дистанционного обеззараживания объектов сложной формы. Способ дистанционного обеззараживания и обезвреживания удаленных объектов предусматривает формирование пучка импульсного ультрафиолетового излучения с помощью...
Тип: Изобретение
Номер охранного документа: 0002559780
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fc3

Танковая система автоматического заряжания "скоропея-3"

Изобретение относится к бронетанковой технике, а более конкретно к танковым системам автоматического заряжания танковых орудий. Танковая система автоматического заряжания присоединена к корме тяжелобронированной обитаемой башни и состоит из трех последовательных частей - свободного...
Тип: Изобретение
Номер охранного документа: 0002560181
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7201

Способ балансировки металлического беззубцового резонатора волнового твердотельного гироскопа

Изобретение относится к балансировке металлических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки металлического беззубцового цилиндрического резонатора волнового твердотельного...
Тип: Изобретение
Номер охранного документа: 0002560755
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7253

Способ очистки жидких радиоактивных отходов

Изобретение относится к способу очистки жидких радиоактивных отходов (ЖРО). Заявленный способ предусматривает дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка УФ-излучением ксеноновой лампы, микрофильтрацию с отделением шлама, содержащего радиоактивный...
Тип: Изобретение
Номер охранного документа: 0002560837
Дата охранного документа: 20.08.2015
Показаны записи 11-20 из 50.
27.03.2015
№216.013.361c

Устройство управления параметрами оптического излучения

Изобретение относится к области оптики и касается устройства управления параметрами лазерного излучения. Устройство включает в себя источник лазерного излучения, поляризатор, вращающийся оптический элемент и цепь обратной связи. Цепь обратной связи состоит из светоделительной пластины,...
Тип: Изобретение
Номер охранного документа: 0002545336
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3cff

Способ получения наномодифицированного термопласта

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например,...
Тип: Изобретение
Номер охранного документа: 0002547103
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.4651

Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов

Изобретение относится к боеприпасам, в частности к комбинированной кумулятивной облицовке для формирования высокоскоростных компактных элементов. Комбинированная кумулятивная облицовка для формирования высокоскоростных компактных элементов содержит струеобразующую часть в форме полусферы и...
Тип: Изобретение
Номер охранного документа: 0002549505
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4c91

Способ определения характеристик наложившихся друг на друга радиосигналов одной частоты

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных...
Тип: Изобретение
Номер охранного документа: 0002551115
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d81

Способ определения координат источника радиоизлучения

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности и уменьшение времени определения координат источника радиоизлучения (ИРИ). Указанный результат достигается за счет использования при определении пеленгов ИРИ...
Тип: Изобретение
Номер охранного документа: 0002551355
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6132

Каркас конструкции антенного рефлектора из полимерного композиционного материала

Изобретение относится к космической технике, в частности к созданию прецизионных антенных рефлекторов с высокоточными отражающими поверхностями сложной геометрии, искривленными в двух измерениях, для эксплуатации в условиях космического орбитального полета. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002556424
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.6e3e

Способ дистанционного обеззараживания и обезвреживания удаленных объектов и устройство для его осуществления

Группа изобретений относится к области санитарии и может быть использована для дистанционного обеззараживания объектов сложной формы. Способ дистанционного обеззараживания и обезвреживания удаленных объектов предусматривает формирование пучка импульсного ультрафиолетового излучения с помощью...
Тип: Изобретение
Номер охранного документа: 0002559780
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6fc3

Танковая система автоматического заряжания "скоропея-3"

Изобретение относится к бронетанковой технике, а более конкретно к танковым системам автоматического заряжания танковых орудий. Танковая система автоматического заряжания присоединена к корме тяжелобронированной обитаемой башни и состоит из трех последовательных частей - свободного...
Тип: Изобретение
Номер охранного документа: 0002560181
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7201

Способ балансировки металлического беззубцового резонатора волнового твердотельного гироскопа

Изобретение относится к балансировке металлических резонаторов твердотельных волновых гироскопов (ВТГ) и может быть использовано при производстве навигационных приборов различного назначения. Способ балансировки металлического беззубцового цилиндрического резонатора волнового твердотельного...
Тип: Изобретение
Номер охранного документа: 0002560755
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.7253

Способ очистки жидких радиоактивных отходов

Изобретение относится к способу очистки жидких радиоактивных отходов (ЖРО). Заявленный способ предусматривает дозированное введение в кубовый остаток ЖРО перекиси водорода, обработку кубового остатка УФ-излучением ксеноновой лампы, микрофильтрацию с отделением шлама, содержащего радиоактивный...
Тип: Изобретение
Номер охранного документа: 0002560837
Дата охранного документа: 20.08.2015
+ добавить свой РИД