×
25.08.2017
217.015.aa69

Результат интеллектуальной деятельности: МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlGa)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs. Метаморфный фотопреобразователь, выполненный согласно изобретению, имеет повышенные величину фототока и КПД. 5 з.п. ф-лы, 4 ил.

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей (солнечных элементов).

В последние десятилетия в мире постоянно возрастал интерес к возобновляемым источникам энергии, в частности использующим солнечную энергию. Для космических летательных аппаратов фотовольтаика (солнечная энергетика) является единственным источником энергии, что во многом обуславливает ее развитие, однако в последние годы постоянно растет и доля фотовольтаики в общем объеме энергии, генерируемой наземными электростанциями. При этом разработка полупроводниковых структур каскадных фотоэлектрических преобразователей (ФЭП) на основе соединений А3В5, преобразующих концентрированное излучение, является одним из наиболее перспективных путей к достижению наивысших значений КПД фотоэлектрического преобразования. Значительное ограничение на КПД каскадных ФЭП накладывают свойства полупроводниковых материалов, из которых выполнены элементы их полупроводниковой структуры. В первую очередь, это относится к параметру кристаллической решетки. Наличие рассогласования материалов по параметру решетки приводит к накапливанию упругих напряжений, которые релаксируют при достижении определенной толщины с образованием дефектов, что особенно критично для фотопреобразующих структур ввиду большой толщины их фотоактивных слоев. Таким образом, обеспечение возможности расширения спектрального диапазона фоточувствительности субэлементов каскадного ФЭП, которое влечет за собой увеличение генерируемого ими фототока, является важной задачей для реализации потенциала КПД каскадных фотопреобразователей.

Известен метаморфный фотопреобразователь (см. заявка US 20140370648, МПК H01L 31/18, опубл. 18.12.2014), содержащий подложку из GaAs и три инвертированных фотоактивных p-n-перехода, один из которых выполнен из GalnAs с использованием метаморфного буферного слоя, при этом GaInAs p-n-переход включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из GaInP.

Недостатком известного метаморфного фотопреобразователя является недостаточный фототок GaInAs p-n-перехода, связанный с рекомбинацией носителей на гетерогранице эмиттерного слоя GaInAs и слоя широкозонного окна GaInP, а также с потерей носителей, фотогенерированных в слое широкозонного окна.

Известен метаморфный фотопреобразователь (см. заявка US 20120211068, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из AlGaInAs.

Недостатком известного метаморфного фотопреобразователя является значительное последовательное сопротивление структуры за счет большого разрыва зон на гетерогранице широкозонное окно-эмиттерный слой, связанное с наличием AlGaInAs широкозонного окна с большим содержанием алюминия.

Известен метаморфный фотопреобразователь (см. заявка ЕР 2086024, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов является гетеропереходом.

Недостатками известного метаморфного фотопреобразователя являются большое последовательное сопротивление структуры, связанное с наличием AlGaInAs широкозонного окна, а также малый фототок, генерируемый метаморфными p-n-переходами в случае использования широкозонного окна GaInP.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является метаморфный фотопреобразователь (см. заявка US 20120240987, МПК H01L 31/18, опубл. 27.09.2012), принятый за прототип и включающий подложку из Ge, метаморфный буферный слой и один фотоактивный p-n-переход, выполненный из GaInAs и включающий базовый слой, эмиттерный слой и слой широкозонного окна из GaInP.

Недостатками известного метаморфного фотопреобразователя является рекомбинация носителей на гетерогранице эмиттерного слоя из GaInAs и слоя широкозонного окна из GaInP, а также выход носителей, фотогенерированных в слое широкозонного окна за пределы фотоактивного перехода, что снижает эффективность его преобразования.

Задачей настоящего решения является создание такого метаморфного фотопреобразователя, в котором обеспечивалось бы хорошее собирание носителей, фотогенерированных в слое широкозонного окна и в эмиттерном слое, что обуславливает повышение фототока и КПД фотопреобразователя.

Поставленная задача достигается тем, что метаморфный фотопреобразователь включает последовательно выращенные на подложке из GaAs метаморфный буферный слой и по меньшей мере одни фотоактивный p-n-переход, выполненный из InGaAs и включающий базовый слой и эмиттерный слой, а также слой широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой из InGaAs.

В метаморфном фотопреобразователе p-n-переход может быть выполнен из InyGa1-yAs, где y=0,24.

Между метаморфным буферным слоем и базовым слоем может быть включен слой тыльного потенциального барьера из In(AlGa)As.

В метаморфном фотопреобразователе базовый слой может быть выполнен толщиной 3000 нм, эмиттерный слой может быть выполнен толщиной 500 нм, слой широкозонного окна может быть выполнен толщиной 50 нм, а контактный субслой может быть выполнен 300 нм.

Новым в метаморфном фотопреобразователе является выполнение слоя широкозонного окна из Inx(AlyGa1-y)1-xAs, где x=0,2-0,5, что позволяет повысить фототок, генерируемый фотопреобразователем, и сократить его последовательное сопротивление.

В метаморфном фотопреобразователе уровень легирования базового слоя атомами кремния может составлять порядка 1⋅1017 см-3, уровень легирования эмиттерного слоя атомами цинка может составлять порядка 1⋅1018 см-3, а уровень легирования слоя широкозонного окна атомами цинка может составлять порядка 2⋅1018 см-3.

В метаморфном фотопреобразователе уровень легирования контактного субслоя атомами цинка может составлять порядка 1⋅1019 см-3.

Настоящее техническое решение поясняется чертежами, где

на фиг. 1 показано схематичное изображение поперечного сечения настоящего метаморфного фотопреобразователя;

на фиг. 2 представлены зонные диаграммы гетеропереходов: контактный субслой/слой широкозонного окна/эмиттер для метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 1 - зона проводимости, кривая 2 - валентная зона) и In0.24(Al0.5Ga0.5)0.76As (кривая 3 - зона проводимости, кривая 4 - валентная зона), кривая 5 - уровень Ферми;

на фиг. 3 представлены спектральные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 6) и In0.24(Al0.5Ga0.5)0.76As (кривая 7);

на фиг. 4 представлены вольтамперные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 8) и In0.24(Al0.5Ga0.5)0.76As (кривая 9).

Настоящий метаморфный фотопреобразователь (фиг. 1) включает подложку 1, выполненную из GaAs, метаморфный буферный слой 2 и по меньшей мере один фотоактивный p-n-переход 3, выполненный из InGaAs и включающий базовый слой 4, с толщиной, например, 3000 нм и уровнем легирования, например, атомами кремния порядка 1⋅1017 см-3, и эмиттерный слой 5, выполненный толщиной, например 500 нм и уровнем легирования, например, атомами цинка порядка 1⋅1018 см-3, слой 6 широкозонного окна, выполненный из In(AlxGa1-x)As, где x=0,2-0,5, толщиной, например, 50 нм, и уровнем легирования, например, атомами цинка порядка 2⋅1018 см-3, и контактный субслой 7, выполненный из InxGa1-xAs с толщиной, например 300 нм, и уровнем легирования, например, атомами цинка порядка 1⋅1019 см-3.

В случае рассогласования подложки 1 и растущего метаморфного буферного слоя 2 в последнем будут накапливаться упругие напряжения. При накоплении критического значения упругих напряжений происходит пластическая деформация, и часть упругой энергии превращается в энергию дислокаций. Другая часть упругой энергии идет на работу, совершаемую кристаллической решеткой при расширении или сжатии объема твердой фазы после частичной релаксации упругих напряжений.

Метаморфный буферный слой (МБС) 2 может представлять собой набор релаксированных субслоев переменного состава, на интерфейсы которого загибаются дислокации. Профиль изменения состава может быть линейным, ступенчатым или пилообразным.

С целью увеличения собирания фотогенерированных носителей из области широкозонного окна, в настоящем изобретении были оптимизированы параметры слоя 6 широкозонного окна. Для этого предварительно был проведен численный расчет зонной диаграммы структуры ФЭП. В результате было обнаружено, что при составе слоя 6 широкозонного окна In0.24AlAs (в случае ФЭП с концентрацией In 24%), данный слой имеет энергетический максимум для дна зоны проводимости (фиг 2, кривая 1). Так как слой 6 широкозонного окна легирован акцепторной примесью, неосновными носителями заряда (ННЗ) в нем являются электроны. Подобный вид дна зоны проводимости приводит к тому, что ННЗ, рожденные в области поля, направленного к контактному субслою 7, погибнут, не дав вклада в фототок. В результате в коротковолновой области снижается внутренний квантовый выход.

Такое же поведение происходит при использовании слоя 6 широкозонного окна, выполненного из GaInP. Важно также отметить, что интерфейс между слоями GaInP слоя 6 широкозонного окна и GaInAs эмиттерного слоя 5 может характеризоваться повышенной рекомбинацией, так как эти материалы этих слоев имеют разные атомы пятой группы (мышьяк и фосфор), что будет приводить к рекомбинации носителей, фотогенерированных в эмиттерном слое 5, вблизи слоя 6 широкозонного окна.

При добавлении в состав слоя 6 широкозонного окна In0.24AlAs галлия, ширина запрещенной зоны снижается, что существенно изменяет вид зонной диаграммы. Оптимальным составом для слоя 6 широкозонного окна в исследованной структуре ФЭП является состав In0.24(Al0.5Ga0.5)0.76As. При данном составе в слое 6 окна оказывается встроено поле (фиг. 2, кривая 3). Направление поля способствует движению фотогенерированных электронов в сторону эмиттера, что способствует более полному собиранию ННЗ.

Было дополнительно проведено сравнение спектральных характеристик квантового выхода ФЭП с различным составом широкозонного окна. Несмотря на то что уменьшение ширины запрещенной зоны слоя окна должно приводить к улучшению поглощения длинноволновых фотонов и, как следствие, являться оптическим фильтром для ФЭП, измеренная спектральная характеристика фотоэлемента с более узкозонным окном (фиг 4, кривая 7) имела более высокий внутренний квантовый выход. Это полностью подтверждает моделирование зонной диаграммы. При увеличении спектральной эффективности для коротковолнового диапазона была сохранена спектральная эффективность для длинноволнового края, тем самым увеличив суммарный вырабатываемый фототок.

Оптимизация широкозонного окна также позволила значительно улучшить электрические характеристики. Это является следствием уменьшения ширины запрещенной зоны и уменьшения барьера для основных носителей заряда в слое широкозонного окна (фиг. 2, кривая 4). Действительно, в случае использования широкозонного окна In0.24AlAs в валентной зоне возникал высокий барьер, препятствующий транспорту дырок в сторону контактного подслоя (фиг. 2, кривая 2), что выражалось в повышении последовательного сопротивления и падении КПД ФЭП (фиг 4, кривая 8). В результате использования широкозонного окна, выполненного из In0.24(Al0.5Ga0.5)0.76As, удалось уменьшить последовательное сопротивление структуры и существенно увеличить фактор заполнения (фиг. 4, кривая 9), а следовательно, и КПД.


МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 121.
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.2fc4

Способ формирования массивов квантовых точек повышенной плотности

Способ формирования массивов квантовых точек повышенной плотности для использования в различных оптоэлектронных устройствах. Способ формирования массива квантовых точек высокой плотности включает три этапа. На первом происходит формирование зародышевого ряда квантовых точек в режиме...
Тип: Изобретение
Номер охранного документа: 0002543696
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.6857

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный...
Тип: Изобретение
Номер охранного документа: 0002558264
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
Показаны записи 21-30 из 107.
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.2fc4

Способ формирования массивов квантовых точек повышенной плотности

Способ формирования массивов квантовых точек повышенной плотности для использования в различных оптоэлектронных устройствах. Способ формирования массива квантовых точек высокой плотности включает три этапа. На первом происходит формирование зародышевого ряда квантовых точек в режиме...
Тип: Изобретение
Номер охранного документа: 0002543696
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.42cf

Способ рентгеноспектрального определения размеров наночастиц в образце

Использование: для рентгеноспектрального определения размеров наночастиц в образце. Сущность изобретения заключается в том, что выполняют последовательное облучение в режиме прохождения и в режиме отражения исследуемой области образца пучками монохроматизированных рентгеновских лучей с...
Тип: Изобретение
Номер охранного документа: 0002548601
Дата охранного документа: 20.04.2015
20.07.2015
№216.013.64d4

Лазер-тиристор

Использование: для получения управляемой последовательности мощных лазерных импульсов. Сущность изобретения заключается в том, что лазер-тиристор содержит катодную область (1), включающую подложку n-типа проводимости (2), широкозонный слой n-типа проводимости (3), анодную область (4),...
Тип: Изобретение
Номер охранного документа: 0002557359
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.6857

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный...
Тип: Изобретение
Номер охранного документа: 0002558264
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.7371

Композиционный материал, поглощающий излучение в ближней ик области спектра

Изобретение относится к композиционным материалам, поглощающим инфракрасное излучение в ближней инфракрасной области, и может быть использовано, например, в оптических фильтрах и специальных панелях сложной формы. Композиционный материал включает переплетенные базальтовые волокна с диаметром от...
Тип: Изобретение
Номер охранного документа: 0002561123
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7491

Способ модификации поверхности пористого кремния

Изобретение относится к области химической модификации поверхности пористого кремния и, в частности, может найти применение для создания биосовместимого и способного к полной биодеградации носителя медицинских препаратов, обеспечивающего их целевую доставку и пролонгированное действие в...
Тип: Изобретение
Номер охранного документа: 0002561416
Дата охранного документа: 27.08.2015
20.11.2015
№216.013.92aa

Тонкопленочный солнечный элемент

Тонкопленочный солнечный элемент содержит светопрозрачную подложку (1), на которую последовательно нанесены светопрозрачная электропроводящая пленка (2), p-слой (3) из микрокристаллического гидрогенизированного кремния в виде твердого раствора SiC:H, где 0,7<х<0,95, с оптической шириной...
Тип: Изобретение
Номер охранного документа: 0002569164
Дата охранного документа: 20.11.2015
+ добавить свой РИД