×
25.08.2017
217.015.aa3a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002611595
Дата охранного документа
28.02.2017
Аннотация: Изобретение относится к области космических исследований и может быть использовано для определения места готовящегося землетрясения. Сущность: регистрируют низкочастотное электромагнитное излучение. По превышению интенсивности излучения фонового уровня судят о местоположении эпицентра землетрясения. В момент превышения интенсивностью низкочастотного излучения фонового уровня дополнительно сканируют с борта космического аппарата участки подстилающей земной поверхности в рентгеновском диапазоне спектра. По наличию и размерам участка земной поверхности, характеризующегося интенсивностью рентгеновского излучения с энергией 2-25 КэВ, превышающей фоновое значение не менее чем на 20 стандартных отклонений, уточняют местоположение эпицентра землетрясения. Причем низкочастотное электромагнитное излучение принимают на три антенны, размещенные на космическом аппарате в виде геометрического прямого угла. При этом в вершине угла помещают антенну первого приемного канала, общую для антенн второго и третьего приемных каналов, размещенных в азимутальной и угломестной плоскостях соответственно. Преобразуют принимаемое низкочастотное излучение по частоте с использованием двух гетеродинов, частоты которых разносят на удвоенное значение промежуточной частоты и выбирают симметричными относительно несущей частоты низкочастотного излучения. Выделяют в трех приемных каналах напряжения промежуточной частоты. Перемножают между собой напряжения гетеродинов, напряжения промежуточной частоты первого и второго, первого и третьего каналов. Выделяют узкополосные напряжения на частоте, равной разности частот гетеродинов. Осуществляют корреляционную обработку напряжений промежуточной частоты первого и второго, первого и третьего приемных каналов. Сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и в случае их превышения пороговых напряжений измеряют разности фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов. По значению разности фаз определяют направления на эпицентр ожидаемого землетрясения в азимутальной и угломестной плоскостях. Причем частоту первого гетеродина используют для преобразования по частоте низкочастотного излучения, принимаемого по первому каналу. Частоту второго гетеродина используют для преобразования по частоте низкочастотных излучений, принимаемых по второму и третьему каналам. Дополнительно используют третью измерительную базу, образованную второй и третьей приемными антеннами и расположенную в гипотенузной плоскости. Тремя измерительными базами образуют прямоугольный треугольник. Перемножают между собой напряжения промежуточной частоты второго и третьего приемных каналов. Выделяют узкополосное напряжение на частоте, равной разности частот гетеродинов. Осуществляют корреляционную обработку напряжений промежуточной частоты второго и третьего приемных каналов. Сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и в случае их превышения пороговых напряжений измеряют разность фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов. По значению разности фаз определяют направление на эпицентр ожидаемого землетрясения в гипотенузной плоскости. По измеренным значениям азимута, угла места и угла ориентации определяют место эпицентра ожидаемого землетрясения. Технический результат: повышение точности определения местоположения эпицентра ожидаемого землетрясения. 7 ил.

Предлагаемый способ относится к области космических физико-технических исследований и может быть использован для прогноза сейсмической активности Земли.

Известны способы определения места землетрясения с борта космического аппарата (патенты РФ №№2.045.086, 2.172.968, 2.205.431, 2.263.334; патент США; 4.884.030; Чмырев В.М. и др. Электрические поля и гидромагнитные волны в ионосфере над очагом землетрясения. Геомагнетизм и аэрономия, 1986, т. 26, №6, с. 1020-1022 и другие).

Из известных способов наиболее близким к предлагаемому является «Способ определения места землетрясения с борта космического аппарата» (патент РФ №2.263.334, G01V 9/00, 2004), который и выбран в качестве прототипа.

Известный способ обеспечивает регистрацию низкочастотного электромагнитного излучения. По превышению интенсивности излучения долевого уровня судят о местоположении эпицентра землетрясения. В момент превышения интенсивности низкочастотного излучения фонового уровня дополнительно сканируют с борта космического аппарата участки подстилающей земной поверхности в рентгеновском диапазоне спектра. Уточняют местоположение эпицентра землетрясения посредством определения направления на эпицентр ожидаемого землетрясения в азимутальной и угломестной плоскостях.

Однако потенциальные возможности известного способа используются не в полной мере. Использование третьей измерительной базы, расположенной в гипотенузной плоскости, позволяет определить угол ориентации Ψ на эпицентр ожидаемого землетрясения. Измерив три угла: азимут α, угол места β и угол ориентации Ψ и использовав корреляционную обработку принимаемых низкочастотных излучений, можно точно и однозначно определить местоположение эпицентра ожидаемого землетрясения.

Технической задачей изобретения является точное и однозначное определение местоположения эпицентра ожидаемого землетрясения с борта космического аппарата путем использования трех измерительных баз, расположенных в азимутальной угломестной и гипотенузной плоскостях соответственно, и корреляционной обработки принимаемых низкочастотных излучений.

Поставленная задача решается тем, что согласно способу определения места землетрясения с борта космического аппарата, включающего регистрацию низкочастотного электромагнитного излучения и суждение по превышению интенсивностью излучения фонового уровня о местоположении эпицентра землетрясения, при этом в момент превышения интенсивностью низкочастотного излучения фонового уровня дополнительно сканируют с борта космического аппарата участки подстилающей земной поверхности в рентгеновском диапазоне спектра и по наличию и размерам участка земной поверхности, характеризующегося интенсивностью рентгеновского излучения с энергией 2-25 КэВ, превышающей фоновое значение не менее чем на 20 стандартных отклонений, уточняют местоположение эпицентра землетрясения, низкочастотное электромагнитное излучение принимают на три антенны, размещенные на космическом аппарате в виде геометрического прямого угла, в вершине которого помещают антенну первого приемного канала, общую для антенн второго и третьего приемных каналов, размещенных в азимутальной и угломестной плоскостях соответственно, преобразуют принимаемое низкочастотное излучение по частоте с использованием двух гетеродинов, частоты которых разносят на удвоенное значение промежуточной частоты

fГ2-fГ1=2fup

и выбирают симметричными относительно несущей частоты fc низкочастотного излучения

fc-fГ1-fГ2-fc=fup

выделяют в трех приемных каналах напряжения промежуточной частоты, перемножают между собой напряжения гетеродинов, напряжения промежуточной частоты первого и второго, первого и третьего приемных каналов, выделяют узкополосные напряжения на частоте, равной разности частот гетеродинов, осуществляют корреляционную обработку напряжений промежуточной частоты первого и второго, первого и третьего приемных «каналов, сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и в случае их превышения измеряют разности фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов, по значению которых определяют направления на эпицентр ожидаемого землетрясения, в которых определяют направления на эпицентр ожидаемого землетрясения в азимутальной и угломестной плоскостях, причем частоту fГ1 первого гетеродина используют для преобразования по частоте низкочастотного излучения, принимаемого по первому каналу, а частоту fГ2 второго гетеродина используют для преобразования по частоте низкочастотных излучений, принимаемых по второму и третьему каналам,

отличается от ближайшего аналога тем, что используют третью измерительную базу, образованную второй и третьей приемными антеннами и расположенную в гипотенузной плоскости, тремя измерительными базами образуют прямоугольный треугольник, перемножают между собой напряжения промежуточной частоты второго и третьего приемных каналов, выделяют узкополосное напряжение на частоте, равной разности частот гетеродинов, осуществляют корреляционную обработку напряжений промежуточной частоты второго и третьего приемных каналов, сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и в случае их превышения измеряют разность фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов, по значению которой определяют направление на эпицентр ожидаемого землетрясения в гипотенузной плоскости, по измеренным значениям азимута α, угла места β и угла ориентации Ψ точно и однозначно определяют место эпицентра ожидаемого землетрясения.

Предлагаемый способ включает регистрацию ОНЧ-излучения аппаратурой КА. Для повышения точности определения эпицентра ожидаемого землетрясения измеряют разности фаз в азимутальной, угломестной и гипотенузной плоскостях (фиг. 6):

,

,

,

где d1, d2, d3 - измерительные базы; λ - длина волны; α, β, Ψ - азимут, угол места и угол ориентации эпицентра ожидаемого землетрясения.

Однако фазовому методу пеленгации эпицентра землетрясения свойственно противоречие между требованиями повышения точности и устранения неоднозначности фазовых измерений. Действительно, согласно вышеприведенным формулам для повышения точности пеленгации эпицентра ожидаемого землетрясения необходимо увеличить относительные размеры баз d1/λ, d2/λ и d3/λ, превосходят значения 2π, т.е. наступает неоднозначность отчета угловых координат α, β и Ψ. Для устранения указанной неоднозначности используют корреляционную обработку принимаемых по трем каналам низкочастотных электромагнитных излучений. При этом для преобразования по частоте принимаемых низкочастотных электромагнитных излучений используют два гетеродина, частоты fГ1 и fГ2 которых разносят на удвоенное значение промежуточной частоты

fГ2-fГ1=2fup

и выбирают симметричными относительно несущей частоты fc низкочастотного излучения (фиг. 5)

fc-fГ1=fГ2-fc=fup.

Это обстоятельство приводит к удвоению числа дополнительных каналов приема, но создает благоприятные условия для их подавления корреляционной обработкой принимаемых низкочастотных излучений.

В предлагаемом способе, так же как и в прототипе, дополнительно сканируют с борта КА в рентгеновском диапазоне спектра участки подстилающей земной поверхности, регистрируют в верхней атмосфере образование фотонов при взаимодействии с атмосферой потоков электронов, высыпающихся из внутреннего радиационного пояса под воздействием ОНЧ-излучения, и по наличию и размерам участка подстилающей земной поверхности, характеризующегося интенсивностью рентгеновского излучения с E=2-25 КэВ, превышающей фоновое значение не менее чем на 20 стандартных отклонений, уточняют местоположение эпицентра ожидаемого землетрясения.

Новые отличительные операции предлагаемого способа обеспечивают тонкую и однозначную пеленгацию эпицентра ожидаемого землетрясения и повышение помехоустойчивости приемника ОНЧ-излучения.

Достигается это следующим образом.

Распространяясь от Земли и достигая L-оболочек, ОНЧ-излучение эффективно рассеивает электроны с энергиями порядка 30 КэВ - 1 МэВ, которые, попадая сверху из радиационного пояса, поглощаются атмосферой на высотах 70-100 км. Энергетический эквивалент потока при этом достигает 0,1 эрг/см2⋅с. При этом основным процессом взаимодействия с воздухом является ионизация атомов. Но, как следует из рассмотрения сечений взаимодействия, существует вероятность порядка 10-4 образования фотона тормозным излучением. При данном механизме примерно в половине случаев образуется фотон с энергией, сравнимой с энергией электрона, т.е. в районе 10-30 КэВ, и примерно половина таких фотонов, двигаясь вверх, не поглотится атмосферой.

Энергия электрона в 30 КэВ соответствует 5-10-8 эрг и поток частиц составляет 2-106 см-2⋅c-1. Если район генерации ОНЧ-излучения ограничен на Земле областью размерами в 100 км, то светимость в рентгеновском диапазоне слоя, где происходит поглощение электронов, составляет

E=0,1⋅(5⋅10-8)-1⋅104 фотонов/с.

На высоте орбиты в 300 км поток фотонов будет составлять

E=0,25⋅2⋅1016/(4πR)2=2 фотона/см2,

где R=200 км.

Предположим, что на спутнике установлен пропорциональный счетчик площадью 100 см, регистрирующий рентгеновские фотоны с эффективностью 0,5. Его собственный фон, остающийся после селекции заряженных частиц, равен примерно 2 ими/см2⋅с. Прибор пролетает область высыпания электронов примерно за 10 с. В таком случае от фона будет накоплено 2000 ими, а от излучающей области 1000 ими, что составляет 20 стандартных отклонений и представляет вполне регистрируемую величину.

Следовательно, по изображению подстилающей поверхности в рентгеновском диапазоне по параметрам яркого пятна (размеры, спектр, поведение во времени) распознается зона готовящегося землетрясения.

Кроме того, в этом случае повышается надежность контроля готовящегося землетрясения с борта КА.

Предлагаемый способ иллюстрируется фиг. 1-7. На фиг. 1 обозначены Земля 1, область 2 (≈100 км) образования напряжений в земной коре;

образование 3 ОНЧ-излучения, траектория 4 полета КА, поле зрения 5 рентгеновского датчика; КА 6, внутренний радиационный пояс 7; траектория 8 движения электронов по магнитным силовым линиям; высыпание электронов 9 под воздействием ОНЧ-излучения; образование фотонов 10 при взаимодействии потоков электронов с атмосферой на высоте 70-100 км; атмосфера 11.

Возможность идентификации зоны готовящегося землетрясения иллюстрируется фиг. 2 и 3. На фиг. 2 обозначены: зона 12 готовящегося землетрясения, трасса 13 KA, проходящая над очагом готовящегося землетрясения, трассы 14 и 15 KA, проходящие вблизи очага готовящегося землетрясения.

На фиг. 3 показаны в зависимости от времени интенсивности потока, регистрируемого рентгеновским детектором с полем зрения ≈10° в диапазоне 2-25 КэВ при полете КА над очагом готовящегося землетрясения (зависимость 16) и вблизи очага готовящегося землетрясения (зависимости 17 и 18). Время соответствует полету КА на минимальном удалении от эпицентра готовящегося землетрясения.

Предлагаемый способ может быть реализован с помощью известных средств. Для регистрации ОНЧ-излучения может использоваться приемный ОНЧ-комплекс, включающий в свой состав:

- трехкомпонентные ОНЧ-детекторы магнитного поля (типа МДП-3);

- шестикомпонентный приемник-анализатор (типа АНЧ-6);

- приемник ОНЧ-сигналов, измеряющий амплитуду и фазу СДВ радиопередатчиков (типа ПОНЧ-6);

- микропроцессор-анализатор (типа МА-2);

- приемник-пеленгатор ОНЧ-сигналов.

В качестве КА могут использоваться существующие орбитальные комплексы, перспективные комплексы типа УКП, выводимые на геостационарные орбиты, и другие аппараты.

Для сканирования с борта КА участков земной поверхности могут использоваться системы управления типа «Дельта», «Чайка», устанавливаемые на ОС «Салют» и других КА.

Для регистрации фотонов в рентгеновском диапазоне может использоваться аппаратура типа СКР, установленная на КА «Астрон», либо «Барс», а также радиотелеметрическая система типа БР 9 ЦУ.

На фиг. 4 изображена структурная схема приемника-пеленгатора. Частотная диаграмма, поясняющая образование дополнительных каналов приема, представлена на фиг. 5. Взаимное расположение приемных антенн показано на фиг. 6, геометрическая схема расположения КА и эпицентра 12 ожидаемого землетрясения показана на фиг. 7. Приемник-пеленгатор содержит приемные антенны 19, 20 и 21, гетеродины 22 и 23, смесители 24, 25 и 26, усилители 29, 30 и 31 промежуточной частоты, перемножители 27, 32, 33 и 51 узкоплосные фильтры 28, 34, 35 и 52, блоки корреляторов 36, 37 и 49, пороговые блоки 38, 39, 42, 43, 50 и 54, ключи 40, 41, 44, 45, 53 и 55, фазовые детекторы 46, 47 и 56, блок 48 регистрации.

Принимаемые низкочастотные электромагнитные излучения:

i1(t)=У1⋅cos [2π(fc±Δf)t+ϕ1]

i2(t)=У2⋅cos[2π(fc±Δf)t+ϕ2]

i3(t)=У3⋅cos[2π(fc±Δf)t+ϕ3], 0≤t≤Tc

где У1, У2, У3 - интенсивности излучения;

fc, ϕ1, ϕ2, ϕ3, Tc - несущая частота, начальные фазы и длительность излучения;

±Δf - нестабильность несущей частоты, вызванная эффектом Доплера и другими дестабилизирующими факторами,

с выходов приемных антенн 19, 20 и 21 поступают на первые входы смесителей 24, 25 и 26 соответственно, на вторые входы которых подаются напряжения гетеродинов 22 и 23:

uГ1(t)=υГ1⋅cos(2πfГ1t+ϕГ1),

uГ2(t)=υГ2⋅cos(2πfГ2t+ϕГ2),

Причем частоты fГ1 и fГ2 гетеродинов 22 и 23 разнесены на удвоенное

fГ2-fГ1=2fup

и выбраны симметричными относительно несущей частоты fc (фиг. 5)

fc-fГ1=fГ2-fc=fup.

На выходах смесителей 24, 25 и 26 образуются напряжения комбинационных частот. Усилителями 29, 30 и 31 выделяются напряжения промежуточной (разностной) частоты:

uup1(t)=νпр1⋅cos[2π(fup±Δf)t+ϕup1],

uup2(t)=νпр2⋅cos[2π(fup±Δf)t+ϕup2],

uup3(t)=νпр3⋅cos[2π(fup±Δf)t+ϕup3], 0≤t≤Tc,

где

;

;

K - коэффициент передачи смесителей;

fup=fc-fГ1=fГ2-fc - промежуточная частота;

ϕпр11Г1; ϕпр22Г2; ϕпр33Г3,

которые поступают на входы перемножителей 32, 33 и 51. На выходах последних образуются напряжения:

U1(t)=V1⋅cos[2π(fГ2-fГ1)t+ϕГ+Δϕ1],

U2(t)=V2⋅cos[2π(fГ2-fГ1)t+ϕГ+Δϕ2],

U3(t)=V3⋅cos[2π(fГ2-fГ1)t+ϕГ+Δϕ3], 0≤t≤Tc,

где

;

;

;

K2 - коэффициент передачи перемножителей;

ϕcГ2Г1;

;

;

,

которые выделяются узкополосными фильтрами 34, 35 и 52 соответственно.

Напряжения UГ1(t) и UГ2(t) со вторых выходов гетеродинов 22 и 23 подаются на входы перемножителя 27, на выходе которого образуется напряжение

UГ(t)=VГ⋅cos[2π(fГ2-fГ1)t+ϕГ],

где

;

fГ2-fГ1=2fпр

ϕГГ2Г1,

которое выделяется узкополосным фильтром 28.

Напряжения Uпр1(t) и Uпр2(t), Uпр1(t) и Uпр3(t), Uпр2(t) и Uпр3(t) одновременно поступают на два входа блоков 36, 37 и 49 корреляторов, на первом выходе которых формируются напряжения, пропорциональные корреляционным функциям R1(τ), R2(τ) и R3(τ). Указанные напряжения сравниваются с пороговым напряжением Vпор1 в пороговых блоках 38, 39 и 50. Пороговый уровень Vпор1 превышается только при истинных азимуте αи, угле места βи и угле ориентации Ψи. При превышении порогового напряжения Vпор1 в пороговых блоках 38, 39 и 50 формируются постоянные напряжения, которые поступают на управляющие входы ключей 40, 41 и 53, открывая их. В исходном состоянии ключ 40, 41, 44, 45, 53 и 55 всегда закрыты.

На вторых выходах блоков 36, 37 и 49 корреляторов формируются напряжения, пропорциональные корреляционным функциям R4(τ), R5(τ) и R6(τ). Указанные напряжения сравниваются с пороговым напряжением Vпор2 в пороговых блоках 42, 43 и 54.

Так как канальные напряжения Uпр1(t) и Uпр2(t), Uпр1(t) и Uпр3(t), Uпр2(t) и Uпр3(t) образуются одним и тем же низкочастотным электромагнитным излучением, принимаемым по основному каналу на частоте fc, то между указанными канальными напряжениями существует сильная корреляционная связь. Выходные напряжения, пропорциональные корреляционным функциям R4(τ), R5(τ) и R6(τ), превышают пороговый уровень Vпор2(t) в пороговых блоках 42, 43 и 54. В последних формируются постоянные напряжения, которые поступают на управляющие входы ключей 44, 45 и 55, открывая их.

При этом напряжение U1(t), U2(t) и U3(t) с выходов узкополосных фильтров 34, 35 и 52 через открытые ключи 40, 41, 44, 45, 53 и 55 поступает на первые входы фазовых детекторов 46, 47 и 56 соответственно, на вторые входы которых подается напряжение UГ(t) с выхода узкополосного фильтра 28. На выходах фазовых детекторов 46, 47 и 56 образуются низкочастотные напряжения:

UH1(α)=VH1⋅cosΔϕ1,

UH2(α)=VH2⋅cosΔϕ2,

UH3(α)=VH3⋅cosΔϕ3,

где

;

;

;

K3 - коэффициент передачи фазовых детекторов;

Пропорциональные фазовым сдвигам Δϕ1, Δϕ2 и Δϕ3.

Эти напряжения фиксируются блоком 48 регистрации.

Описанная выше работа приемника-пеленгатора соответствует случаю приема низкочастотных электромагнитных излучений по основному каналу на частоте fc (фиг. 5).

Если ложный сигнал (помеха) принимается по первому зеркальному каналу на частоте f31 или по второму зеркальному каналу на частоте f32, то на вторых входах блоков корреляторов 36, 37 и 49 напряжения отсутствуют. Ключи 44, 45 и 55 не открываются, и указанные ложные сигналы (помехи) подавляются.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые по первому комбинационному каналу на частоте fK1 или по второму комбинационному каналу на частоте fK2 или по любому другому дополнительному каналу.

Если ложные сигналы (помехи) одновременно принимаются по первому зеркальному каналу на частоте f31 и по второму зеркальному каналу на частоте f32, то на вторых выходах блоков корреляторов 36, 37 и 49 образуются напряжения, пропорциональные корреляционным функциям R4(τ), R5(τ) и R6(τ). Однако ключи 44, 45 и 55 в этом случае не открываются. Это объясняется тем, что канальные напряжения образуются разными ложными сигналами (помехами), принимаемыми на разных частотах f31, и f32. Между ними существует слабая корреляционная связь; напряжения, пропорциональные корреляционным функциям R4(τ), R5(τ) и R6(τ), не превышают порогового напряжения υпор в пороговых блоках 42, 43 и 54. Ключи 44, 45 и 55 не открываются, и ложные сигналы (помехи), принимаемые одновременно по первому зеркальному каналу на частоте f31 и по второму зеркальному каналу на частоте f32, подавляются.

По аналогичной причине подавляются и ложные сигналы (помехи), принимаемые одновременно по двум или более другим дополнительным каналам.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает точное и однозначное определение местоположения эпицентра ожидаемого землетрясения с борта космического аппарата. Это достигается использованием трех измерительных баз, расположенных в азимутальной, угломестной и гипотенузной плоскостях соответственно, и корреляционной обработки принимаемых низкочастотных излучений.

Кроме того, устраняется нестабильность несущей частоты, вызванная эффектом Доплера и другими дестабилизирующими факторами.

Повышение помехоустойчивости приемного ОНЧ-комплекса достигается подавлением ложных сигналов (помех, принимаемых по дополнительным каналам), а также корреляционной обработкой принимаемых излучений.

Принцип определения местоположения эпицентра ожидаемого землетрясения и других источников радиоизлучений пассивным методом отличается новизной, оригинальностью и может найти широкое практическое применение в различных областях радиолокации и радионавигации.

Способ определения места землетрясения с борта космического аппарата, включающий регистрацию низкочастотного электромагнитного излучения и суждение по превышению интенсивностью излучения фонового уровня о местоположении эпицентра землетрясения, при этом в момент превышения интенсивностью низкочастотного излучения фонового уровня дополнительно сканируют с борта космического аппарата участки подстилающей земной поверхности в рентгеновском диапазоне спектра и по наличию и размерам участка земной поверхности, характеризующегося интенсивностью рентгеновского излучения с энергией 2-25 КэВ, превышающей фоновое значение не менее чем на 20 стандартных отклонений, уточняют местоположение эпицентра землетрясения, при этом низкочастотное электромагнитное излучение принимают на три антенны, размещенные на космическом аппарате в виде геометрического прямого угла, в вершине которого помещают антенну первого приемного канала, общую для антенн второго и третьего приемных каналов, размещенных в азимутальной и угломестной плоскостях соответственно, преобразуют принимаемое низкочастотное излучение по частоте с использованием двух гетеродинов, частоты которых разносят на удвоенное значение промежуточной частоты f-f=2f и выбирают симметричными относительно несущей частоты f низкочастотного излучения f-f=f-fc=f, выделяют в трех приемных каналах напряжения промежуточной частоты, перемножают между собой напряжения гетеродинов, напряжения промежуточной частоты первого и второго, первого и третьего каналов, выделяют узкополосные напряжения на частоте, равной разности частот гетеродинов, осуществляют корреляционную обработку напряжений промежуточной частоты первого и второго, первого и третьего приемных каналов, сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и, в случае их превышения, измеряют разности фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов, по значению которых определяют направления на эпицентр ожидаемого землетрясения в азимутальной и угломестной плоскостях, причем частоту f первого гетеродина используют для преобразования по частоте низкочастотного излучения, принимаемого по первому каналу, а частоту f второго гетеродина используют для преобразования по частоте низкочастотных излучений, принимаемых по второму и третьему каналам, отличающийся тем, что используют третью измерительную базу, образованную второй и третьей приемными антеннами и расположенную в гипотенузной плоскости, тремя измерительными базами образуют прямоугольный треугольник, перемножают между собой напряжения промежуточной частоты второго и третьего приемных каналов, выделяют узкополосное напряжение на частоте, равной разности частот гетеродинов, осуществляют корреляционную обработку напряжений промежуточной частоты второго и третьего приемных каналов, сравнивают напряжения, пропорциональные полученным корреляционным функциям, с пороговыми напряжениями и, в случае их превышения, измеряют разность фаз между полученными узкополосными напряжениями на частоте, равной разности частот гетеродинов, по значению которой определяют направление на эпицентр ожидаемого землетрясения в гипотенузной плоскости, по измеренным значениям азимута α, угла места β и угла ориентации Ψ точно и однозначно определяют место эпицентра ожидаемого землетрясения.
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ЗЕМЛЕТРЯСЕНИЯ С БОРТА КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 131-136 из 136.
09.05.2019
№219.017.5138

Устройство для очистки поверхности изделий дуговым разрядом

Устройство относится к технике строительства и ремонта магистральных трубопроводов и может быть использовано в нефтегазодобывающей отрасли. В изобретении обеспечивается повышение производительности, качества и расширение ассортимента очищаемых изделий. Устройство содержит разъемные...
Тип: Изобретение
Номер охранного документа: 0002152271
Дата охранного документа: 10.07.2000
05.03.2020
№220.018.0966

Система мониторинга состояния льда и окружающей среды

Изобретение относится к области автоматизированного мониторинга состояния льда и окружающей среды с одновременным определением координат собственного местонахождения комплекса и передачей полученной информации по радиоканалу. Измерительно-навигационный комплекс содержит корпус 1, приемник 3...
Тип: Изобретение
Номер охранного документа: 0002715845
Дата охранного документа: 03.03.2020
17.06.2020
№220.018.2706

Спутниковая система для определения местоположения судов и самолетов, потерпевших аварию

Изобретение относится к спутниковым системам для определения местоположения аварийных радиобуев (АРБ), предающих радиосигналы бедствия. Техническим результатом является повышение помехоустойчивости и достоверности принимаемых сложных сигналов с фазовой манипуляцией путем подавления ложных...
Тип: Изобретение
Номер охранного документа: 0002723443
Дата охранного документа: 11.06.2020
21.06.2020
№220.018.287b

Способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам для обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей....
Тип: Изобретение
Номер охранного документа: 0002723987
Дата охранного документа: 18.06.2020
01.07.2020
№220.018.2d21

Экологический дирижабль

Дирижабль предназначен для ведения дистанционного экологического мониторинга линейно-протяженных техногенных транспортно-коммуникационных сооружений. Дирижабль содержит приемную антенну 1(19) приемник 2(20) GPS-сигналов, приборы 3(21) дистанционного зондирования земной поверхности и атмосферы,...
Тип: Изобретение
Номер охранного документа: 0002725100
Дата охранного документа: 29.06.2020
01.07.2020
№220.018.2d67

Система контроля соблюдения правил дорожного движения

Изобретение относится к области обеспечения безопасности дорожного движения. Система контроля соблюдения правил дорожного движения содержит сигнальные устройства и исполнительные устройства. Каждое сигнальное устройство содержит блок ввода дискретных сигналов, синхронизатор, передающее...
Тип: Изобретение
Номер охранного документа: 0002725101
Дата охранного документа: 29.06.2020
Показаны записи 131-140 из 183.
23.10.2018
№218.016.9536

Способ синхронизации часов и устройство для его реализации

Предлагаемые способ и устройство синхронизации часов относятся к технике связи и могут быть использованы в радиоинтерферометрии со сверхдлинными базами (РСДБ), а также в службе единого времени и частоты. Технической задачей изобретения является повышение достоверности дуплексной радиосвязи...
Тип: Изобретение
Номер охранного документа: 0002670334
Дата охранного документа: 22.10.2018
09.11.2018
№218.016.9b72

Способ определения погрешностей при траекторных измерениях межпланетных космических аппаратов за счет распространения радиосигналов в ионосфере земли и межпланетной плазме

Изобретение относится к слежению за полётом межпланетных космических аппаратов (МКА) (2), куда вносит погрешности прохождение радиосигналов от МКА (на частоте f01) и близкого к нему на небесной сфере квазара (1) (на частотах f01 и f02) через ионизированную среду (8). По смещению Δf1 = f01- fпр1...
Тип: Изобретение
Номер охранного документа: 0002671921
Дата охранного документа: 07.11.2018
25.01.2019
№219.016.b3ee

Способ контроля состояния конструкции здания или инженерно-строительного сооружения и устройство для его осуществления

Изобретение относится к метрологии. Устройство контроля состояния сооружений содержит радиочастотные метки-транспондеры, блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразования, линию связи - цифровую шину, конвертор, компьютер, дисплей, устройство звуковой...
Тип: Изобретение
Номер охранного документа: 0002678109
Дата охранного документа: 23.01.2019
01.03.2019
№219.016.ce63

Система радиочастотной идентификации на поверхностных акустических волнах

Предлагаемая система относится к области радиотехники и может быть использована для идентификации и охраны различных объектов. Технической задачей изобретения является повышение эффективности охраны объектов путем применения надежной системы, контроля над действиями охранных патрулей. Система...
Тип: Изобретение
Номер охранного документа: 0002422848
Дата охранного документа: 27.06.2011
01.03.2019
№219.016.d0bb

Способ маркировки автотранспорта

Изобретение относится к области предотвращения несанкционированного использования транспортных средств и предназначено для использования при идентификации автомобиля или его частей с целью предупреждения угона, затруднения преступной продажи угнанного транспорта или его частей, а также...
Тип: Изобретение
Номер охранного документа: 0002464644
Дата охранного документа: 20.10.2012
14.03.2019
№219.016.dee2

Компьютерная система дистанционного управления навигационными комплексами для автоматизированного мониторинга окружающей среды в условиях арктики

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачей полученной информации по радиоканалам, и...
Тип: Изобретение
Номер охранного документа: 0002681671
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d5

Способ комбинированной обработки растений для уничтожения вредителей и микроорганизмов

Изобретение относится к области защиты растений. Способ комбинированной обработки растений для уничтожения вредителей и микроорганизмов включает воздействие направленным потоком теплоносителя и направленным бактерицидным излучением. В качестве теплоносителя используют поток горячего воздуха....
Тип: Изобретение
Номер охранного документа: 0002681982
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.f52c

Способ персональной сигнализации о помощи при возникновении опасной ситуации и система для его реализации

Группа изобретений относится к персональному оповещению различных служб охраны порядка, спасения при чрезвычайных ситуациях, пожарных команд, скорой медицинской помощи, служб дорожной безопасности, специальных служб министерства обороны и т.п. при угрозе возникновения опасности или в случаях,...
Тип: Изобретение
Номер охранного документа: 0002422906
Дата охранного документа: 27.06.2011
23.04.2019
№219.017.36e6

Способ дистанционного контроля и диагностики состояния конструкций и инженерных сооружений и устройство для его осуществления

Предлагаемые технические решения относятся к контрольно-измерительной технике и могут быть использованы для непрерывного неразрушающего контроля, оценки и прогнозирования технического состояния конструкций и инженерных сооружений специальных объектов, например, потенциально-опасных участков...
Тип: Изобретение
Номер охранного документа: 0002685578
Дата охранного документа: 22.04.2019
19.06.2019
№219.017.83c9

Способ измерения электрической энергии в двухпроводных сетях с защитой от хищения и устройство для его осуществления

Предлагаемые способ и устройство относятся к электроизмерительной технике и могут быть использованы для измерения электрической энергии в условиях переменного тока для целей коммерческого учета и обнаружения факта и вида хищения электроэнергии, например, на объектах агропромышленного комплекса....
Тип: Изобретение
Номер охранного документа: 0002691665
Дата охранного документа: 17.06.2019
+ добавить свой РИД