×
25.08.2017
217.015.aa18

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов лазерного гироскопа при проведении калибровок (паспортизации) бесплатформенных инерциальных навигационных систем. Способ определения масштабных коэффициентов лазерного гироскопа заключается в том, что лазерный гироскоп закрепляют на планшайбе поворотного стола, далее последовательно поворачивают планшайбу в противоположных направлениях на фиксированный угол α, при этом с выхода лазерного гироскопа для его осей чувствительности регистрируют количество информационных импульсов и их знак, при этом повороты планшайбы на угол α выполняют последовательно относительно трех ортогональных осей вращения OX, OY, OZ, совершая каждой осью чувствительности лазерного гироскопа полный поворот на угол α, затем определяют масштабный коэффициент K соответствующей оси чувствительности лазерного гироскопа из соотношения: где i=1, 2, … - номер оси чувствительности лазерного гироскопа; T T T

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин масштабных коэффициентов лазерного гироскопа при проведении калибровок (паспортизации) бесплатформенных инерциальных навигационных систем, построенных на основе лазерного гироскопа, или их составных частей.

Известен способ определения масштабного коэффициента кольцевого лазера (А.с. SU 1797432, приоритет от 01.08.1990, «Способ определения масштабного коэффициента кольцевого лазера», авторы: Голяев Ю.Д., Соловьева Т.И., Колбас Ю.Ю., Мещеряков Б.М., МПК H01S 3/083, опубликовано 10.08.1996, бюл. №22). Сущность данного способа заключается в следующем. Кольцевой лазер (КЛ) закрепляют на планшайбе поворотного стола (далее по тексту - планшайба), совмещая его ось чувствительности с осью вращения планшайбы. Планшайбу последовательно поворачивают в противоположных направлениях (против и по часовой стрелке) на один и тот же угол αТ, причем против часовой стрелки (2n+1) раз, а по часовой стрелке - 2n раз (n=1, 2, …). При каждом повороте регистрируют число выходных информационных импульсов КЛ. Далее вычисляют средние значения чисел выходных информационных импульсов: при повороте по часовой стрелке - , против часовой стрелки - . Затем определяют масштабный коэффициент КЛ по формуле .

Данный способ имеет следующие недостатки:

- неравное количество поворотов КЛ по часовой стрелке и против часовой стрелки при наличии нелинейной во времени составляющей смещения нуля (дрейфе) обуславливает увеличение погрешности определения масштабного коэффициента КЛ;

- совмещение оси чувствительности КЛ с осью вращения планшайбы обеспечивается только технологически, что обуславливает увеличение погрешности определения масштабного коэффициента КЛ.

Вышеперечисленные недостатки существенно снижают точность определения масштабного коэффициента КЛ.

Известен способ определения масштабных коэффициентов трехосного лазерного гироскопа (Федоров A.E., Рекунов Д.А. «Компенсация инструментальных погрешностей трехкомпонентного лазерного гироскопа моноблочной конструкции» // XVI Санкт-Петербургская международная конференция по интегрированным навигационным системам. Сборник материалов, стр. 42-47), основанный на предположении ортогональности его осей чувствительности. Сущность данного способа заключается в следующем. Трехосный лазерный гироскоп (ТЛГ) закрепляют на планшайбе в некотором произвольном положении I. Планшайбу последовательно поворачивают в противоположных направлениях на один и тот же угол на угол , где n=1, 2, … . При поворотах с каждой оси чувствительности ТЛГ регистрируют число и знак выходных информационных импульсов: при повороте против часовой стрелки - , по часовой стрелке - (где i=1, 2, 3 - номер оси чувствительности ТЛГ). Затем определяют полуразность между количеством выходных информационных импульсов, зарегистрированных с i-й оси чувствительности ТЛГ при поворотах планшайбы против и по часовой стрелке. Тем самым компенсируют влияние вращения Земли и аддитивных погрешностей ТЛГ на результаты регистрации. Аналогичные действия выполняют для двух других существенно различных положений ТЛГ, отличающихся между собой установкой ТЛГ относительно оси вращения планшайбы, например положения II и III. Величины углов поворота планшайбы поворотного стола (где j=I, II, III - номер положения ТЛГ на планшайбе) описывают системой уравнений (1):

где , , - количество выходных импульсов (после компенсации влияния вращения Земли и аддитивных погрешностей ТЛГ), зарегистрированных i-й осью чувствительности ТЛГ при повороте планшайбы на углы , , соответственно;

, , - углы поворота планшайбы поворотного стола, задаваемые при трех существенно различных положениях ТЛГ (I, II и III) на планшайбе;

K1, K2, K3 - искомые величины масштабных коэффициентов ТЛГ.

Для случая, когда определитель матрицы не равен нулю, а вектор-столбцы матрицы не лежат в одной плоскости, решение системы уравнений (1) позволяет однозначно определить величины масштабных коэффициентов ТЛГ.

Указанное решение является наиболее близким по технической сущности к заявляемому способу и взято в качестве наиболее близкого аналога.

Данный способ имеет следующие недостатки:

- строгое выполнение требования ортогональности осей чувствительности ТЛГ возможно лишь теоретически, а в действительности оси чувствительности не являются ортогональными между собой из-за допускаемых техническими нормами отклонений от номинальных размеров при изготовлении ТЛГ (технологические допуски), как следствие, это обуславливает увеличение погрешности определения масштабных коэффициентов ТЛГ;

- реализация способа возможна только для трехосных лазерных гироскопов.

Задача, на решение которой направлено заявляемое изобретение, заключается в создании способа, позволяющего с высокой точностью определять масштабные коэффициенты лазерного гироскопа, имеющего любое количество осей чувствительности, ориентированных произвольным образом.

Техническими результатами, на достижение которых направлено заявляемое изобретение, являются расширение функциональных возможностей и повышение точности определения масштабных коэффициентов лазерного гироскопа.

Данные технические результаты достигаются следующим образом. Лазерный гироскоп закрепляют на планшайбе. Далее последовательно поворачивают планшайбу в противоположных направлениях на фиксированный угол αТ, при этом с выхода лазерного гироскопа для его осей чувствительности регистрируют количество информационных импульсов и их знак. Новым в заявляемом способе является то, что повороты планшайбы на угол αT выполняют последовательно относительно трех ортогональных осей вращения OX, OY, OZ, совершая каждой осью чувствительности лазерного гироскопа полный поворот на угол αT. Затем определяют величину масштабного коэффициента Ki соответствующей оси чувствительности лазерного гироскопа из соотношения:

,

где i=1, 2, … - номер оси чувствительности лазерного гироскопа;

- полуразность между количеством информационных импульсов, зарегистрированных с i-й оси чувствительности лазерного гироскопа при последовательных поворотах планшайбы в противоположных направлениях на угол αT относительно оси вращения ОХ;

- полуразность между количеством информационных импульсов, зарегистрированных с i-й оси чувствительности лазерного гироскопа при последовательных поворотах планшайбы в противоположных направлениях на угол αT относительно оси вращения OY;

- полуразность между количеством информационных импульсов, зарегистрированных с i-й оси чувствительности лазерного гироскопа при последовательных поворотах планшайбы в противоположных направлениях на угол αT относительно оси вращения OZ.

За счет совершения поворотов планшайбы на заданный угол относительно трех ортогональных осей вращения OX, OY и OZ каждая ось чувствительности лазерного гироскопа в результате выполнит полный поворот на заданный угол αT, который однозначно определяется тремя проекциями, зарегистрированными соответствующей осью чувствительности (в виде произведения масштабного коэффициента и количества информационных импульсов) при поворотах планшайбы относительно трех ортогональных осей вращения OX, OY и OZ. Таким образом масштабный коэффициент соответствующей оси чувствительности лазерного гироскопа определяют независимо от показаний других осей чувствительности, что позволяет исключить требование ортогональности осей чувствительности лазерного гироскопа и/или не выполнять процедуру ориентации каждой оси чувствительности лазерного гироскопа параллельно оси вращения планшайбы. Это повышает точность определения масштабных коэффициентов лазерного гироскопа. Также указанная совокупность существенных признаков позволяет применять заявляемый способ к лазерным гироскопам с произвольным количеством осей чувствительности, что расширяет функциональные возможности.

Заявляемый способ подробно поясняется на примере трехосного лазерного гироскопа.

На фиг. 1 схематично изображены оси вращения планшайбы поворотного стола OX, OY и OZ.

На фиг. 2 представлено схематичное расположение осей чувствительности лазерного гироскопа относительно осей вращения планшайбы, где 1, 2, 3 - оси чувствительности лазерного гироскопа; α1, α2, α3 - углы между горизонтальными проекциями осей чувствительности на установочную плоскость планшайбы (плоскость ХOZ) и осью ОХ планшайбы; β1, β2, β3 - углы между осями чувствительности лазерного гироскопа и осью OY планшайбы.

Способ определения масштабных коэффициентов лазерного гироскопа реализуется следующим образом.

Предварительно выполняют установку лазерного гироскопа на планшайбу поворотного стола (фиг. 1). К точности установки лазерного гироскопа на планшайбу требований не предъявляется. Последовательно выполняют три серии одинаковых поворотов планшайбы относительно осей OY, ОХ и OZ (одна ось - одна серия). Каждая серия представляет собой последовательные повороты планшайбы в противоположных направлениях (по и против часовой стрелки) на один и тот же угол αT относительно одной из осей OY, ОХ и OZ (фиг. 2). В каждой серии с выхода лазерного гироскопа для каждой i-ой оси чувствительности (i=1, 2, 3) регистрируют количество информационных импульсов и их знак, таким образом, определяют количество выходных импульсов при повороте относительно соответствующей оси планшайбы против часовой стрелки - , , , и по часовой стрелке - , . Показания лазерного гироскопа после компенсации влияния вращения Земли и аддитивных погрешностей ТЛГ можно представить в виде следующей системы уравнений:

где Ki - искомое значение масштабного коэффициента i-й оси чувствительности лазерного гироскопа;

, , - полуразности между количеством информационных импульсов, зарегистрированных с i-й оси чувствительности лазерного гироскопа при поворотах планшайбы против часовой стрелки и по часовой стрелке относительно осей OY, ОХ и OZ соответственно;

αi - угол между горизонтальной проекцией i-й оси чувствительности на установочную плоскость планшайбы (плоскость ХОZ) и осью ОХ планшайбы;

βi - угол между i-ой осью чувствительности лазерного гироскопа и осью OY планшайбы.

Из выражений можно определить величину масштабного коэффициента i-ой оси чувствительности лазерного гироскопа следующим образом:

Аналогичные действия выполняют при определении масштабного коэффициента лазерного гироскопа, имеющего любое количество осей чувствительности (i=1, 2, …), ориентированных произвольным образом.

Авторами разработана и экспериментально проверена методика определения масштабных коэффициентов лазерного гироскопа заявляемым способом. При проверке использовали датчик угловых скоростей, построенный на базе ТЛГ. Угол поворота планшайбы относительно трех ортогональных осей вращения составлял αT=1800° (при скорости вращения 100%), Результаты испытаний показали работоспособность заявляемого способа и подтвердили достижение заявленного технического результата. При этом погрешность определения масштабных коэффициентов датчика угловых скоростей не превысила 2,0⋅10-6 относительных единиц.


СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
СПОСОБ ОПРЕДЕЛЕНИЯ МАСШТАБНЫХ КОЭФФИЦИЕНТОВ ЛАЗЕРНОГО ГИРОСКОПА
Источник поступления информации: Роспатент

Показаны записи 591-600 из 796.
01.11.2019
№219.017.dc35

Способ калибровки и стабилизации параметров спектрометра γ-излучения

Использование: для калибровки и стабилизации параметров спектрометра γ-излучения. Сущность изобретения заключается в том, что калибровку и стабилизацию осуществляют от одного и того же встроенного в блок реперного источника γ-излучения, в качестве которого используют радионуклид Th с...
Тип: Изобретение
Номер охранного документа: 0002704564
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd7e

Устройство адаптивного преобразования данных в режиме реального времени

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей. Устройство адаптивного преобразования данных в режиме реального времени содержит: блок кодирования, вычислительное ядро, первая группа входов/выходов которого...
Тип: Изобретение
Номер охранного документа: 0002704879
Дата охранного документа: 31.10.2019
07.11.2019
№219.017.dedd

Взрывное устройство

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между...
Тип: Изобретение
Номер охранного документа: 0002705122
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
13.11.2019
№219.017.e107

Устройство разделения плавучего прибора на герметичные отсеки

Изобретение относится к области подводной техники и может быть использовано в составе дрейфующего автономного гидроакустического прибора. Устройство разделения плавучего прибора на герметичные отсеки содержит герметичный силовой корпус, состоящий из отсеков - аппаратурного и буйкового, поршня,...
Тип: Изобретение
Номер охранного документа: 0002705722
Дата охранного документа: 11.11.2019
14.11.2019
№219.017.e19d

Способ нанесения покрытий на изделия из материалов, интенсивно окисляющихся в атмосфере воздуха, и установка для его реализации

Изобретение может быть использовано для нанесения функциональных и защитных металлических покрытий, а именно Cu, Ti, Zn, Nb, Mo, W, Sn, Cr, V, Cd, Zr, и может быть использовано в машиностроительной промышленности. Способ нанесения металлического покрытия на изделия из материала, интенсивно...
Тип: Изобретение
Номер охранного документа: 0002705834
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e2f8

Низковольтный электродетонатор

Изобретение относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам с использованием вторичных (бризантных) взрывчатых веществ (ВВ), и может быть применено в качестве малогабаритного средства инициирования зарядов ВВ промышленного назначения,...
Тип: Изобретение
Номер охранного документа: 0002706151
Дата охранного документа: 14.11.2019
16.11.2019
№219.017.e30b

Коллиматор для жесткого рентгеновского излучения

Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n -...
Тип: Изобретение
Номер охранного документа: 0002706219
Дата охранного документа: 15.11.2019
19.11.2019
№219.017.e3a1

Способ изготовления, хранения и применения мобильного портативного модуля для ремонта повреждений в транспортируемых контейнерах с токсичными материалами

Группа изобретений относится к области технологий обеспечения безопасных методов хранения и транспортировки опасных материалов. Способ изготовления портативного модуля для ремонта повреждений включает первоначальное раздельное размещение реагентов в индивидуальных герметичных объемах для...
Тип: Изобретение
Номер охранного документа: 0002706336
Дата охранного документа: 18.11.2019
Показаны записи 281-288 из 288.
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
18.05.2019
№219.017.5468

Приемо-передающий канал неконтактного датчика цели

Изобретение относится к области вооружения, в частности к оптическим неконтактным взрывателям. Сущность изобретения заключается в том, что приемо-передающий канал неконтактного датчика цели включает источник оптического излучения, фокусирующий объектив, фотоприемник, установленный в фокальной...
Тип: Изобретение
Номер охранного документа: 0002280235
Дата охранного документа: 20.07.2006
18.05.2019
№219.017.5856

Способ неконтактного подрыва заряда

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ неконтактного подрыва заряда основан на обнаружении цели посредством лазерного зондирования пространства двумя световыми пучками и регистрации отраженного излучения двумя...
Тип: Изобретение
Номер охранного документа: 0002300729
Дата охранного документа: 10.06.2007
13.12.2019
№219.017.ed1f

Способ определения систематических составляющих смещений нулей трехосного лазерного гироскопа

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин систематических (постоянных) составляющих смещений нулей трехосного лазерного гироскопа (ТЛГ) при проведении калибровок (паспортизации) бесплатформенных инерциальных навигационных систем,...
Тип: Изобретение
Номер охранного документа: 0002708689
Дата охранного документа: 11.12.2019
24.07.2020
№220.018.378f

Способ определения неортогональности осей чувствительности лазерного гироскопа

Изобретение относится к области гироскопического приборостроения. Сущность изобретения заключается в том, что способ определения неортогональности осей чувствительности трехосного лазерного гироскопа (ТЛГ) содержит этапы, на которых установку ТЛГ на планшайбу осуществляют в произвольном...
Тип: Изобретение
Номер охранного документа: 0002727318
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.390e

Импульсный стабилизатор тока

Изобретение относится к области электротехники и может применяться для формирования стабилизированных разрядных токов кольцевого лазера, входящего в состав лазерного датчика угловых скоростей, который является частью бесплатформенной инерциальной навигационной системы летательных аппаратов...
Тип: Изобретение
Номер охранного документа: 0002728284
Дата охранного документа: 29.07.2020
+ добавить свой РИД