×
25.08.2017
217.015.a8e8

Результат интеллектуальной деятельности: Способ измерения состава двухфазного вещества в потоке

Вид РИД

Изобретение

№ охранного документа
0002611439
Дата охранного документа
22.02.2017
Аннотация: Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для определения состава вещества в потоке добываемой и транспортируемой нефти, являющейся, по существу, трехкомпонентным двухфазным веществом (нефть, газ, вода). Предлагается способ измерения состава двухфазного вещества в потоке, при котором выполняют первый такт измерений, в котором воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот и определяют по результатам воздействия его диэлектрическую проницаемость при применении соответствующего чувствительного элемента в виде СВЧ-резонатора и измерении его резонансной частоты электромагнитных колебаний, при этом дополнительно выполняют последовательно два такта измерений, в которых воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот в двух частотных диапазонах, одному из которых соответствует изменение объема резонатора на некоторую фиксированную величину, а другому - изменение этого объема еще на некоторую фиксированную величину, производят измерение значений резонансной частоты резонатора в этих трех тактах измерений, осуществляют совместное функциональное преобразование измеренных значений резонансной частоты резонатора в указанных трех частотных диапазонах, по результатам которого определяют состав двухфазного вещества. Поскольку такты измерений проводят в течение очень короткого времени, то контролируемая область потока является практически неизменной за время проведения тактов измерений, что позволяет повысить точность результатов измерений и определить состав трехкомпонентного двухфазного вещества, в частности нефтеводогазовой смеси. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для определения состава вещества в потоке добываемой и транспортируемой нефти, являющейся, по существу, трехкомпонентным двухфазным веществом (нефть, газ, вода).

Известны способы измерения покомпонентного состава двухфазных веществ, имеющие большое значение и для определения расхода каждого из компонентов добываемой из скважин нефти. Для этого, в частности, нашли применение турбинные расходомеры, которые предполагают предварительную гомогенизацию нефтегазовых смесей, а также и другие типы расходомеров, например на трубке Вентури, для использования которых необходимо наличие сепараторов жидкой и газовой фаз вещества (монография: Кремлевский П.П. Расходомеры и счетчики количества. Справочник. Л.: Машиностроение. Ленингр. отделение. 1989. 701 с.). Эти способы также имеют ограниченную область применения и сложны в реализации.

Известно техническое решение (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. С. 168-177), которое содержит описание способа измерения, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Способ-прототип предназначен для измерения физических свойств веществ путем измерения их электрофизических параметров с применением радиоволновых (СВЧ) чувствительных элементов в виде резонаторов. В частности, для измерений в трубопроводах данный способ базируется на применении измерительных устройств, содержащих в качестве чувствительных элементов проточные объемные резонаторы с торцевыми элементами в виде запредельных волноводов. Недостатком этого способа измерения является ограниченная область применения, обусловленная невозможностью определения состава веществ при большем, чем две, компоненты контролируемого вещества. В частности, это относится к нефтеводогазовой смеси.

Техническим результатом настоящего изобретения является расширение области применения.

Технический результат достигается тем, что в способе измерения состава двухфазного вещества в потоке, при котором выполняют первый такт измерений, в котором воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот и определяют по результатам воздействия его диэлектрическую проницаемость при применении соответствующего чувствительного элемента в виде СВЧ-резонатора и измерении его резонансной частоты электромагнитных колебаний, дополнительно выполняют последовательно два такта измерений, в которых воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот в двух частотных диапазонах, одному из которых соответствует изменение объема резонатора на некоторую фиксированную величину, а другому - изменение этого объема еще на некоторую фиксированную величину, производят измерение значений резонансной частоты резонатора в этих трех тактах измерений, осуществляют совместное функциональное преобразование измеренных значений резонансной частоты резонатора в указанных трех частотных диапазонах, по результатам которого определяют состав двухфазного вещества.

Предлагаемый способ поясняется чертежом. На фиг. 1 приведена схема устройства, поясняющая данный способ измерения.

Здесь показаны: измерительный участок трубопровода 1, волновод 2, первый дополнительный объем 3, волновод 4, второй дополнительный объем 5, электронный блок 6.

Сущность способа измерения состоит в следующем.

Наиболее важной на практике задачей является определение состава трехкомпонентного двухфазного вещества в потоке, а именно объемного содержания нефти или нефтепродукта, газа и воды в их смеси. На примере такого вещества рассмотрим сущность и пути реализации данного способа измерения.

В основе данного способа измерения состава двухфазных веществ, перемещаемых по трубопроводам, лежит проведение основного (первого) и дополнительных (второго и третьего) тактов измерений и последующее совместное функциональное преобразование результатов измерений в этих трех тактах с определением искомого состава вещества в результате этого преобразования. На втором такте измерений производят добавление к объему Vo измерительного участка трубопровода или изъятие из него некоторого фиксированного объема ΔV1 одной из компонент, в предпочтительном варианте объема газа ΔVг. На третьем такте измерений производят, помимо уже добавленного или изъятого объема ΔV1 на втором такте, еще добавление или изъятие объема ΔV2.

Далее будем рассматривать для ясности реализацию способа с добавлением объемов ΔV1 и ΔV2. Рассмотрение реализации способа с изъятием таких объемов проводится аналогично.

Наличие ΔVг приводит к составлению дополнительных уравнений связи входных параметров ∈н, ∈г, ∈в, Vн, Vв и Vг и информативного параметра - резонансной частоты ƒp электромагнитных колебаний проточного резонатора - и, тем самым, позволяет при решении полученной системы уравнений определить покомпонентный состав. Пусть ƒp1 - резонансная частота проточного резонатора, соответствующая первому такту измерений, когда объем резонатора соответствует объему Vо измерительного участка трубопровода, ƒр2 - резонансная частота резонатора во втором такте измерений, когда объем резонатора есть Vо+ΔV1, ƒр3 - объемом трем циклам измерений - первого, и ƒр3 - резонансная частота резонатора в третьем такте измерений, когда объем резонатора есть Vо+ΔV2.

Для нефтеводогазового потока будем при этом иметь

Здесь Vн, Vв и Vг - объемное содержание, соответственно, нефти или нефтепродукта, воды и газа в объеме Vо измерительного участка трубопровода (Vо=Vн+Vв+Vг), ∈н, ∈в и ∈г - диэлектрические проницаемости этих компонентов потока.

Здесь подлежащие измерениям параметры есть Vн, Vв и Vг, а возмущением, от влияния которого на результаты измерений необходимо достичь независимости, является переменная величина (сортность) ∈н нефти или нефтепродукта. Параметры ∈г и ∈в считаются фиксированными; в противном случае систему уравнений (1) следует дополнить уравнениями связи, записанными для частот ƒ4 и ƒ5 (и, соответственно, проведением двух дополнительных тактов измерений, соответствующих дополнительным объемам, присоединяемым к полости, уже содержащей два добавленных объема ΔV1 и ΔV2 с применением соответствующих запредельных волноводов). Решение системы уравнений (1) возможно как аналитически, с учетом конкретных параметров резонатора, дополнительных объемов и свойств контролируемых веществ, так и при аппроксимации экспериментально полученных кривых соответствующими функциями.

На фиг. 1 изображен измерительный участок 1 трубопровода, на котором организовано подсоединение тестового объема газа ΔV. Здесь сам измерительный участок является проточным волноводным резонатором, имеющим торцевые запредельные волноводы, которыми являются торцы магистрального трубопровода (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. 208 с. С. 173-117). Зависимость резонансной (собственной) частоты ƒp1 электромагнитных колебаний резонатора от диэлектрической проницаемости трехкомпонентного вещества соответствует первому уравнению в системе уравнений (1).

К измерительному участку 1 через волновод 2, который является запредельным волноводом для частотного диапазона, вблизи подсоединен первый дополнительный объем 3, ограниченный металлической замкнутой поверхностью (фиг. 1). На втором такте измерений при возбуждении в указанном резонаторе электромагнитных колебаний на частоте ƒр2 (иного типа колебаний), большей частоты ƒp1, волновод 2 не является запредельным, вследствие чего объем резонатора становится равным Vо+ΔV1. Этот дополнительный объем ΔV1 может заполняться газовой фазой потока. Для предотвращения попадания в него жидкости волновод 2 перекрывается проницаемой только для газа диэлектрической перегородкой. На третьем такте измерений к объему Vо+ΔV1 с помощью волновода 4, запредельного для частот, меньших, чем частота ƒр3, добавляется на измерительном участке 1 второй дополнительный объем 5, равный ΔV2, заполняемый газом, при возбуждении электромагнитных колебаний более высокого типа на частоте ƒp3h2p1. Такой дополнительный объем 5 может быть подсоединен и к первому дополнительному объему 3 через соответствующий волновод. Итак, второй такт измерений характеризуется добавлением объема ΔV1, а третий такт - добавлением объема ΔV1+ΔV2 к первоначальному объему Vo.

Полученные три зависимости ƒp1, ƒp2 и от входных параметров можно описать с помощью известных соотношений следующего вида (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. 208 с. С. 173-117):

где ƒp0 - начальная (в отсутствие жидкой фазы) значение резонансной частоты, Vг - суммарный объем, занимаемый газовой фазой во время соответствующего такта измерений, Vж - объем жидкости (водонефтяной смеси).

Данное соотношение (2) соответствует рассмотрению задачи определения покомпонентного состава нефтеводогазовой смеси как задачи измерения сплошности, когда требуется определить количество свободного газа в потоке жидкости. Для смеси воды и нефти или нефтепродукта, характеризуемой значением диэлектрической проницаемости ∈ж, известны различные аналитические и эмпирические соотношения, относящиеся к тем или иным режимам потоков таких смесей. Так, при относительно малом (~5%) содержании воды в потоке нефти или нефтепродуктах справедливо следующее соотношение (монография: Теория и практика экспресс-контроля влажности твердых и жидких материалов/ Кричевский Е.С., Бензарь В.К., Венедиктов М.В. и др. М.: Энергия. 1980. 240 с. С. 45-66):

где , W=Vв/(Vн+Vв) - влагосодержание.

Частоты ƒp1, ƒр2 и ƒp1 могут быть достаточно близкими. Реализация данного способа не требует различия ∈в на разных частотах.

На фиг. 1 приведено схематичное изображение трубопровода с контролируемым двухфазным веществом. В проточном резонаторе на измерительном участке 1 трубопровода возбуждают электромагнитные колебания с помощью генераторов в составе электронного блока 6 (его подсоединение показано схематично) в диапазонах частот, включающих резонансные частоты ƒр1, ƒp2 и ƒp3. В этом же электронном блоке 6 измеряют значения этих резонансных частот электромагнитных колебаний, осуществляют совместное функциональное преобразование согласно соотношению (1) и определяют, таким образом, искомые значения Vн, Vг и Vв и, если необходимо, ∈н.

Возможно также не одновременное, а последовательное возбуждение в проточном резонаторе электромагнитных колебаний в диапазонах частот, включающих резонансные частоты ƒp1, ƒр2 и ƒр3, и их измерение. При этом данные измеряемые значения сохраняют в электронном блоке и, по завершении цикла измерений с получением данных во всех трех тактах измерений, производят указанное выше функциональное преобразование согласно соотношению (1) с определением значений Vн, Vв и Vг и, если необходимо, ∈н. Поскольку такты измерений производят в течение очень короткого времени, то контролируемая область потока является практически неизменной за время проведения тактов измерений, что не влияет на результаты измерений.

Таким образом, данный способ позволяет определять состав транспортируемого трехкомпонентного двухфазного вещества, в частности нефтеводогазовой смеси. Он реализуем с применением электромагнитных волн СВЧ-диапазонов частот и с использованием соответствующей этим диапазонам элементной базы.

Способ измерения состава двухфазного вещества в потоке, при котором выполняют первый такт измерений, в котором воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот и определяют по результатам воздействия его диэлектрическую проницаемость при применении соответствующего чувствительного элемента в виде СВЧ-резонатора и измерении его резонансной частоты электромагнитных колебаний, отличающийся тем, что дополнительно выполняют последовательно два такта измерений, в которых воздействуют на вещество электромагнитными волнами СВЧ-диапазона частот в двух частотных диапазонах, одному из которых соответствует изменение объема резонатора на некоторую фиксированную величину, а другому - изменение этого объема еще на некоторую фиксированную величину, производят измерение значений резонансной частоты резонатора в этих трех тактах измерений, осуществляют совместное функциональное преобразование измеренных значений резонансной частоты резонатора в указанных трех частотных диапазонах, по результатам которого определяют состав двухфазного вещества.
Способ измерения состава двухфазного вещества в потоке
Способ измерения состава двухфазного вещества в потоке
Источник поступления информации: Роспатент

Показаны записи 61-70 из 142.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
20.02.2019
№219.016.c2f6

Магниторезистивная головка-градиометр

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом. Техническим результатом является создание магниторезистивной головки-градиометра на основе металлической ферромагнитной наноструктуры с планарным протеканием...
Тип: Изобретение
Номер охранного документа: 0002403652
Дата охранного документа: 10.11.2010
23.02.2019
№219.016.c647

Способ управления движением судна

Изобретение относится к области судовождения. Автоматическое управление движением судна обычно осуществляется с помощью кормового руля достаточно эффективно, но при наличии нескольких гребных винтов, а также при волнении моря или ветре качество управления падает. Предложенный способ позволяет...
Тип: Изобретение
Номер охранного документа: 0002388650
Дата охранного документа: 10.05.2010
23.02.2019
№219.016.c64b

Способ измерения объемного содержания нефти и воды в потоке нефтеводяной эмульсии в трубопроводе

В резонаторе (4), встроенном в измерительный участок (1) трубопровода (2), возбуждают электромагнитные колебания и формируют два сигнала, частота одного из которых пропорциональна собственной (резонансной) частоте колебаний резонатора, а частота другого - его добротности. По резонансной частоте...
Тип: Изобретение
Номер охранного документа: 0002410672
Дата охранного документа: 27.01.2011
23.02.2019
№219.016.c660

Устройство для измерения массы сжиженного газа в замкнутом резервуаре

Изобретение относится к электромагнитным методам контроля и измерения и может быть использовано для измерения массы сжиженных газов, включая криогенные жидкости, при любом их фазовом состоянии. Сущность: устройство содержит резонатор, выполненный в виде непрерывной щелевой линии на стенке...
Тип: Изобретение
Номер охранного документа: 0002427805
Дата охранного документа: 27.08.2011
Показаны записи 61-70 из 99.
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
+ добавить свой РИД