×
25.08.2017
217.015.a7db

Результат интеллектуальной деятельности: ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники. Сталь содержит, мас.%: углерод 0,16-0,19, хром 11,5-12,5, никель 3,5-4,0, молибден 2,3-2,5, кремний 1,5-2,0, кобальт 5,5-6,5, азот 0,07-0,10, марганец 0,2-0,4, иттрий 0,00001-0,05, церий 0,00001-0,05, лантан 0,00001-0,05, неодим 0,00001-0,05, железо – остальное. Сумма концентраций углерода и азота составляет 0,26-0,29 мас.%. Повышается ударная вязкость и сопротивление повторным нагрузкам, снижается скорость развития трещины усталости при сохранении высокого значения предела прочности. 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники, работающих при температурах от минус 70 до плюс 200°С во всеклиматических условиях.

Из спецификации AMS 5744, 04.01.1993 известна коррозионно-стойкая сталь AM 355 (США) для силовых деталей машин, в том числе самолетных конструкций, содержащая, мас.%:

С 0,10-0,15
N 0,07-0,13
Cr 15,00-16,00
Ni 4,00-5,00
Mo 2,50-3,25
Mn 0,50-1,25
Si до 0,030
Fe остальное

Недостатком стали являются пониженные значения относительного сужения и ударной вязкости с острым надрезом.

Из /US 4450006 А, 22.05.1984/ известна высокопрочная коррозионно-стойкая сталь мартенситного класса, упрочненная азотом, содержащая, мас. %:

углерод 0,15-0,50
медь 1,0-3,0
хром 13,0-17,0
кремний до 0,5
кобальт 5,5-6,5
азот 0,02-0,1
марганец до 2,0
железо остальное

Недостатком стали является то, что она не сбалансирована по фазовому составу, в результате чего имеется большой разброс по пределу прочности.

Из /SU 1723185 А1, 30.03.1992/ известна хромомарганцевая сталь переходного (аустенитно-мартенситного) класса, содержащая, мас. %:

углерод 0,12-0,2
хром 11,8-12,9
марганец 6,6-6,9
кремний 1,1-2,0
алюминий 0,01-0,028
кальций 0,055-0,08
железо остальное

Недостатком стали является низкий предел текучести (σ0,2) из-за высокого содержания остаточного аустенита (40-50%) после упрочняющей термообработки. Сталь не сбалансирована по фазовому составу.

Из /SU 829716 А1, 15.05.1981/ известна коррозионно-стойкая сталь переходного класса 18Х14Н4АМ3, содержащая, мас. %:

углерод 0,17-0,20
хром 13-14,5
никель 4,0-4,5
молибден 2,3-2,5
азот 0,05-0,10
марганец 0,1-1,0
кремний 0,1-0,7
железо остальное

Недостатком стали является недостаточная прочность для таких узлов, как шасси самолета, а также пониженные значения коэффициента интенсивности напряжений (KIC).

Наиболее близким аналогом является сталь, раскрытая в /RU 2164546 С2, 27.03.2001/, следующего химического состава, мас. %:

С 0,18-0,21
Cr 13,0-14,0
Ni 4,0-4,5
Mo 2,3-2,8
Si 1,7-2,5
Co 3,5-4,5
N 0,06-0,09
Mn 0,1-1,0
Y 0,001-0,05
Ce 0,001-0,05
La 0,001-0,05
Fe остальное

при этом сумма Y+Ce+La≤0,1 мас. %.

Недостатком стали-прототипа является повышенное количество остаточного аустенита (15-20%), что снижает значения прочности при малоцикловой усталости, а повышенное содержание углерода снижает ударную вязкость стали, особенно при отрицательных температурах.

Техническим результатом предложенного изобретения являются увеличение значений ударной вязкости, сопротивления повторным нагрузкам (малоцикловой усталости), снижение скорости развития трещины усталости (СРТУ) при сохранении высокого значения предела прочности, а также уменьшение содержания в стали вредных примесей серы и кислорода.

Для достижения технического результата предложена высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса, содержащая углерод, хром, никель, молибден, кремний, азот, марганец, кобальт, иттрий, церий, лантан, железо, при этом сталь дополнительно содержит неодим при следующем соотношении компонентов, мас. %:

углерод 0,16-0,19
хром 11,5-12,5
никель 3,5-4,0
молибден 2,3-2,5
кремний 1,5-2,0
кобальт 5,5-6,5
азот 0,07-0,10
марганец 0,2-0,4
иттрий 0,00001-0,05
церий 0,00001-0,05
лантан 0,00001-0,05
неодим 0,00001-0,05
железо остальное

при этом сумма концентраций углерода и азота составляет 0,26-0,29 мас. %, а соотношение компонентов, определяющих фазовый состав стали в литом состоянии, определяется выражениями:

Crмэкв = 20-[мас. % Cr+1,5 × мас. % Ni+0,7 × мас. % Si+0,75 × мас. % Mn + 30-32 × (мас. % С + мас. % N)+0,6 × мас. % Мо+0,2 × мас. % Со]=(-8) - (-11);

Crфэкв = мас. % Cr - 1,5 × мас. % Ni+2 × мас. % Si - 0,75 × мас. % Mn - 28 × (мас. % С + мас. % N) + мас. % Мо - 0,6 × мас. % Со=0,8-1,7,

где Crфэкв - хромовый эквивалент мартенситообразования,

Crфэкв - хромовый эквивалент ферритообразования.

Фазовый состав стали в литом состоянии определяется по структурной диаграмме деформируемых нержавеющих сталей (Потак Я. М, Сагалевич Е.А. Структурная диаграмма деформируемых нержавеющих сталей // МиТОМ. 1971. №9. С.12-16).

Подобранное соотношение легирующих элементов позволяет получить в литом состоянии 30-50% аустенита, а после упрочняющей термической обработки - получить структуру без дельта-феррита, ухудшающего механические свойства, и заданное соотношение мартенсита и аустенита (85-90% мартенсита и 10-15% остаточного аустенита), обеспечивая высокий уровень механических и коррозионных свойств.

Легирование стали повышенным содержанием (по сравнению с прототипом) кобальта, являющегося упрочнителем твердого раствора, и подобранный фазовый состав стали позволяют получить при высокой прочности (σв≥1760 МПа) высокое сопротивление повторным нагрузкам.

Микролегирование редкоземельными элементами (РЗМ) Y, Се, La в указанном соотношении позволяет снизить содержание неметаллических включений и перевести их в глобулярную форму.

Дополнительное введение в сталь неодима уменьшает содержание вредных примесей, преимущественно оксидов, за счет высокой степени сродства неодима к кислороду. В процессе выплавки неодим связывает вредные примеси, в частности кислород, в химические соединения, часть которых всплывает на поверхность расплава и удаляется вместе со шлаком. Вследствие этого в металле значительно снижается количество концентраторов напряжений, что приводит к повышению предела выносливости при малоцикловой усталости. Кроме того, РЗМ, являясь центрами кристаллизации, способствуют получению мелкого зерна до 5-6 балла.

Снижение нижнего предела по углероду и повышение верхнего предела по азоту по сравнению с прототипом при сумме концентраций углерода и азота 0,26-0,29 мас. % и легирование РЗМ, которые снижают содержание вредных примесей и измельчают зерно, позволяют увеличить значения ударной вязкости KCV и снизить скорость роста трещины усталости при высоких значениях предела прочности стали.

Примеры осуществления

Предлагаемую сталь и сталь-прототип приготавливали в одинаковых условиях.

В открытую индукционную печь загружали шихтовые материалы исходных компонентов, после чего проводились плавки, в конце каждой из которых в расплав вводили редкоземельные металлы в количестве 0,05 мас. % каждого в виде лигатуры. Процесс выплавки сталей контролировался измерением магнитной литой пробы на приборе ИФСС (индикатор фазового состава стали), позволяющем определить фазовый состав стали (процентное соотношение аустенита и мартенсита). Полученные слитки подвергали горячей деформации с получением прутков, из которых изготовили: образцы с V-образным надрезом (rн=0,25 мм) размером 10×10×55 мм - для определения ударной вязкости KCV; цилиндрические образцы М10×65 - для измерения предела прочности, цилиндрические образцы М20×100 с выточкой rн=0,75 мм (концентратор напряжений Kt=2,2) - для определения сопротивления малоцикловой усталости; плоские образцы размером 60×63 мм и толщиной 10 мм для определения скорости роста трещины усталости (СРТУ); образцы размером 3×3×3 мм - для определения серы; образцы размером 10×10×50 мм - для определения количества остаточного аустенита; шлифы размером 15×15 мм - для определения содержания дельта-феррита и неметаллических включений (оксидов строчечных).

В таблице 1 представлен состав предлагаемой стали.

Содержание серы определяли в соответствии с ГОСТ 12345-2001.

Количество остаточного аустенита после упрочняющей термообработки определяли баллистическим методом на установке типа «Штеблейн» в соответствии с ММ 1.595-5-424-2011.

Содержание дельта-феррита определяли в соответствии с ГОСТ 11878-66.

Количество неметаллических включений (оксидов строчечных) определяли в соответствии с ГОСТ 1778-70.

Сравнительные испытания механических свойств проводили при температуре 20°С.

Предел прочности определяли в соответствии с ГОСТ 1497-84.

Ударную вязкость KCV измеряли в соответствии с ГОСТ 9454-78.

Испытания на малоцикловую усталость (МЦУ) образцов с концентратором напряжений Kt=2,2 на базе N=2⋅105 циклов проводили в соответствии с ГОСТ 25.502-79, на определение скорости роста трещины усталости - в соответствии с ОСТ 190268-78.

Свойства предлагаемой стали и стали-прототипа представлены в таблице 2.

Полученные результаты подтверждают преимущества предлагаемой стали.

По значениям предела выносливости при малоцикловой усталости на базе Ν=2⋅105 циклов при Kt=2,2 и скорости роста трещины усталости предлагаемая сталь превосходит сталь-прототип на 24% и 30% соответственно. По величине ударной вязкости KCV предлагаемая сталь также имеет преимущество перед сталью-прототипом, при этом значения предела прочности находятся на уровне прототипа.

Предлагаемая сталь может быть использована для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники, работающих при температурах от минус 70 до плюс 200°C во всеклиматических условиях с защитой ЛКП деталей внешнего контура.

Использование данной стали позволит существенно повысить надежность деталей и узлов авиационной техники за счет более высокого сопротивления циклическим нагрузкам и низкой скорости роста трещины усталости, что позволит существенно увеличить ресурс авиационной техники.


ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 341-350 из 370.
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a17

Связующее для получения антифрикционных изделий, препрег и изделие, выполненное из него

Изобретение относится к области производства антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Предложено связующее для получения...
Тип: Изобретение
Номер охранного документа: 0002313010
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b23

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки. Для обеспечения повышенной кратковременной прочности...
Тип: Изобретение
Номер охранного документа: 0002373038
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
Показаны записи 341-342 из 342.
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД