×
25.08.2017
217.015.a7db

Результат интеллектуальной деятельности: ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники. Сталь содержит, мас.%: углерод 0,16-0,19, хром 11,5-12,5, никель 3,5-4,0, молибден 2,3-2,5, кремний 1,5-2,0, кобальт 5,5-6,5, азот 0,07-0,10, марганец 0,2-0,4, иттрий 0,00001-0,05, церий 0,00001-0,05, лантан 0,00001-0,05, неодим 0,00001-0,05, железо – остальное. Сумма концентраций углерода и азота составляет 0,26-0,29 мас.%. Повышается ударная вязкость и сопротивление повторным нагрузкам, снижается скорость развития трещины усталости при сохранении высокого значения предела прочности. 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям аустенитно-мартенситного класса, предназначенным для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники, работающих при температурах от минус 70 до плюс 200°С во всеклиматических условиях.

Из спецификации AMS 5744, 04.01.1993 известна коррозионно-стойкая сталь AM 355 (США) для силовых деталей машин, в том числе самолетных конструкций, содержащая, мас.%:

С 0,10-0,15
N 0,07-0,13
Cr 15,00-16,00
Ni 4,00-5,00
Mo 2,50-3,25
Mn 0,50-1,25
Si до 0,030
Fe остальное

Недостатком стали являются пониженные значения относительного сужения и ударной вязкости с острым надрезом.

Из /US 4450006 А, 22.05.1984/ известна высокопрочная коррозионно-стойкая сталь мартенситного класса, упрочненная азотом, содержащая, мас. %:

углерод 0,15-0,50
медь 1,0-3,0
хром 13,0-17,0
кремний до 0,5
кобальт 5,5-6,5
азот 0,02-0,1
марганец до 2,0
железо остальное

Недостатком стали является то, что она не сбалансирована по фазовому составу, в результате чего имеется большой разброс по пределу прочности.

Из /SU 1723185 А1, 30.03.1992/ известна хромомарганцевая сталь переходного (аустенитно-мартенситного) класса, содержащая, мас. %:

углерод 0,12-0,2
хром 11,8-12,9
марганец 6,6-6,9
кремний 1,1-2,0
алюминий 0,01-0,028
кальций 0,055-0,08
железо остальное

Недостатком стали является низкий предел текучести (σ0,2) из-за высокого содержания остаточного аустенита (40-50%) после упрочняющей термообработки. Сталь не сбалансирована по фазовому составу.

Из /SU 829716 А1, 15.05.1981/ известна коррозионно-стойкая сталь переходного класса 18Х14Н4АМ3, содержащая, мас. %:

углерод 0,17-0,20
хром 13-14,5
никель 4,0-4,5
молибден 2,3-2,5
азот 0,05-0,10
марганец 0,1-1,0
кремний 0,1-0,7
железо остальное

Недостатком стали является недостаточная прочность для таких узлов, как шасси самолета, а также пониженные значения коэффициента интенсивности напряжений (KIC).

Наиболее близким аналогом является сталь, раскрытая в /RU 2164546 С2, 27.03.2001/, следующего химического состава, мас. %:

С 0,18-0,21
Cr 13,0-14,0
Ni 4,0-4,5
Mo 2,3-2,8
Si 1,7-2,5
Co 3,5-4,5
N 0,06-0,09
Mn 0,1-1,0
Y 0,001-0,05
Ce 0,001-0,05
La 0,001-0,05
Fe остальное

при этом сумма Y+Ce+La≤0,1 мас. %.

Недостатком стали-прототипа является повышенное количество остаточного аустенита (15-20%), что снижает значения прочности при малоцикловой усталости, а повышенное содержание углерода снижает ударную вязкость стали, особенно при отрицательных температурах.

Техническим результатом предложенного изобретения являются увеличение значений ударной вязкости, сопротивления повторным нагрузкам (малоцикловой усталости), снижение скорости развития трещины усталости (СРТУ) при сохранении высокого значения предела прочности, а также уменьшение содержания в стали вредных примесей серы и кислорода.

Для достижения технического результата предложена высокопрочная коррозионно-стойкая сталь аустенитно-мартенситного класса, содержащая углерод, хром, никель, молибден, кремний, азот, марганец, кобальт, иттрий, церий, лантан, железо, при этом сталь дополнительно содержит неодим при следующем соотношении компонентов, мас. %:

углерод 0,16-0,19
хром 11,5-12,5
никель 3,5-4,0
молибден 2,3-2,5
кремний 1,5-2,0
кобальт 5,5-6,5
азот 0,07-0,10
марганец 0,2-0,4
иттрий 0,00001-0,05
церий 0,00001-0,05
лантан 0,00001-0,05
неодим 0,00001-0,05
железо остальное

при этом сумма концентраций углерода и азота составляет 0,26-0,29 мас. %, а соотношение компонентов, определяющих фазовый состав стали в литом состоянии, определяется выражениями:

Crмэкв = 20-[мас. % Cr+1,5 × мас. % Ni+0,7 × мас. % Si+0,75 × мас. % Mn + 30-32 × (мас. % С + мас. % N)+0,6 × мас. % Мо+0,2 × мас. % Со]=(-8) - (-11);

Crфэкв = мас. % Cr - 1,5 × мас. % Ni+2 × мас. % Si - 0,75 × мас. % Mn - 28 × (мас. % С + мас. % N) + мас. % Мо - 0,6 × мас. % Со=0,8-1,7,

где Crфэкв - хромовый эквивалент мартенситообразования,

Crфэкв - хромовый эквивалент ферритообразования.

Фазовый состав стали в литом состоянии определяется по структурной диаграмме деформируемых нержавеющих сталей (Потак Я. М, Сагалевич Е.А. Структурная диаграмма деформируемых нержавеющих сталей // МиТОМ. 1971. №9. С.12-16).

Подобранное соотношение легирующих элементов позволяет получить в литом состоянии 30-50% аустенита, а после упрочняющей термической обработки - получить структуру без дельта-феррита, ухудшающего механические свойства, и заданное соотношение мартенсита и аустенита (85-90% мартенсита и 10-15% остаточного аустенита), обеспечивая высокий уровень механических и коррозионных свойств.

Легирование стали повышенным содержанием (по сравнению с прототипом) кобальта, являющегося упрочнителем твердого раствора, и подобранный фазовый состав стали позволяют получить при высокой прочности (σв≥1760 МПа) высокое сопротивление повторным нагрузкам.

Микролегирование редкоземельными элементами (РЗМ) Y, Се, La в указанном соотношении позволяет снизить содержание неметаллических включений и перевести их в глобулярную форму.

Дополнительное введение в сталь неодима уменьшает содержание вредных примесей, преимущественно оксидов, за счет высокой степени сродства неодима к кислороду. В процессе выплавки неодим связывает вредные примеси, в частности кислород, в химические соединения, часть которых всплывает на поверхность расплава и удаляется вместе со шлаком. Вследствие этого в металле значительно снижается количество концентраторов напряжений, что приводит к повышению предела выносливости при малоцикловой усталости. Кроме того, РЗМ, являясь центрами кристаллизации, способствуют получению мелкого зерна до 5-6 балла.

Снижение нижнего предела по углероду и повышение верхнего предела по азоту по сравнению с прототипом при сумме концентраций углерода и азота 0,26-0,29 мас. % и легирование РЗМ, которые снижают содержание вредных примесей и измельчают зерно, позволяют увеличить значения ударной вязкости KCV и снизить скорость роста трещины усталости при высоких значениях предела прочности стали.

Примеры осуществления

Предлагаемую сталь и сталь-прототип приготавливали в одинаковых условиях.

В открытую индукционную печь загружали шихтовые материалы исходных компонентов, после чего проводились плавки, в конце каждой из которых в расплав вводили редкоземельные металлы в количестве 0,05 мас. % каждого в виде лигатуры. Процесс выплавки сталей контролировался измерением магнитной литой пробы на приборе ИФСС (индикатор фазового состава стали), позволяющем определить фазовый состав стали (процентное соотношение аустенита и мартенсита). Полученные слитки подвергали горячей деформации с получением прутков, из которых изготовили: образцы с V-образным надрезом (rн=0,25 мм) размером 10×10×55 мм - для определения ударной вязкости KCV; цилиндрические образцы М10×65 - для измерения предела прочности, цилиндрические образцы М20×100 с выточкой rн=0,75 мм (концентратор напряжений Kt=2,2) - для определения сопротивления малоцикловой усталости; плоские образцы размером 60×63 мм и толщиной 10 мм для определения скорости роста трещины усталости (СРТУ); образцы размером 3×3×3 мм - для определения серы; образцы размером 10×10×50 мм - для определения количества остаточного аустенита; шлифы размером 15×15 мм - для определения содержания дельта-феррита и неметаллических включений (оксидов строчечных).

В таблице 1 представлен состав предлагаемой стали.

Содержание серы определяли в соответствии с ГОСТ 12345-2001.

Количество остаточного аустенита после упрочняющей термообработки определяли баллистическим методом на установке типа «Штеблейн» в соответствии с ММ 1.595-5-424-2011.

Содержание дельта-феррита определяли в соответствии с ГОСТ 11878-66.

Количество неметаллических включений (оксидов строчечных) определяли в соответствии с ГОСТ 1778-70.

Сравнительные испытания механических свойств проводили при температуре 20°С.

Предел прочности определяли в соответствии с ГОСТ 1497-84.

Ударную вязкость KCV измеряли в соответствии с ГОСТ 9454-78.

Испытания на малоцикловую усталость (МЦУ) образцов с концентратором напряжений Kt=2,2 на базе N=2⋅105 циклов проводили в соответствии с ГОСТ 25.502-79, на определение скорости роста трещины усталости - в соответствии с ОСТ 190268-78.

Свойства предлагаемой стали и стали-прототипа представлены в таблице 2.

Полученные результаты подтверждают преимущества предлагаемой стали.

По значениям предела выносливости при малоцикловой усталости на базе Ν=2⋅105 циклов при Kt=2,2 и скорости роста трещины усталости предлагаемая сталь превосходит сталь-прототип на 24% и 30% соответственно. По величине ударной вязкости KCV предлагаемая сталь также имеет преимущество перед сталью-прототипом, при этом значения предела прочности находятся на уровне прототипа.

Предлагаемая сталь может быть использована для изготовления высоконагруженных силовых деталей планера, силового крепежа, деталей шасси авиационной техники, работающих при температурах от минус 70 до плюс 200°C во всеклиматических условиях с защитой ЛКП деталей внешнего контура.

Использование данной стали позволит существенно повысить надежность деталей и узлов авиационной техники за счет более высокого сопротивления циклическим нагрузкам и низкой скорости роста трещины усталости, что позволит существенно увеличить ресурс авиационной техники.


ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 370.
19.04.2019
№219.017.2d30

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения отливок из жаропрочных сплавов, в частности турбинных лопаток газотурбинных двигателей и установок. Устройство содержит зону нагрева с нагревателем и зону охлаждения, разделенные теплоизолирующим экраном. В зоне нагрева расположен нагреватель с...
Тип: Изобретение
Номер охранного документа: 0002258578
Дата охранного документа: 20.08.2005
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
Показаны записи 291-300 из 342.
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
+ добавить свой РИД