×
25.08.2017
217.015.a74a

Результат интеллектуальной деятельности: Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы, и может быть использовано в медицине и технике. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы включает термомеханическую обработку заготовки, термомеханическое наведение эффекта памяти формы, разгружение и нагрев для восстановления формы. Перед термомеханической обработкой заготовку подтвергают рекристаллизационному отжигу и закалке. В качестве термомеханической обработки проводят низкотемпературную термомеханическую обработку путем многопроходной деформациии при температуре 18-24°С до получения накопленной степени деформации 42-60%, затем осуществляют деформирование в заданную форму, ее фиксацию и рекристаллизационный отжиг в интервале температур 550-650°С в течение 30-70 мин. Термомеханическое наведение эффекта памяти осуществляют путем нагрева выше температуры А обратного мартенситного превращения, охлаждения до температуры начала прямого B2→R превращения, деформации при этой температуре на 21-25% с выдержкой при этой температуре 0,5-3 мин, охлаждения до температуры окончания мартенситного превращения -196°С, выдержки при этой температуре 0,5-3 мин. Реализуется величина обратимой деформации 18,4%. 2 ил., 1 пр.

Область техники

Настоящее изобретение относится к металлургии, а именно к термической обработке сплавов с памятью формы (СПФ) и наведению в них эффекта памяти формы (ЭПФ) и обратимого ЭПФ (ОЭПФ), и может быть использовано в любой отрасли медицины и техники, где применяются материалы, обладающие ЭПФ.

Предшествующий уровень техники

Собственно ЭПФ реализуется при восстановлении формы при нагреве после деформации с образованием мартенсита напряжений или/и деформационной переориентацией существующего мартенсита охлаждения или мартенсита напряжений. Обратимый ЭПФ (ОЭПФ) заключается в самопроизвольном обратимом изменении формы при термоциклировании через интервал мартенситных превращений.

СПФ - функциональные материалы

К наиболее важным служебным характеристикам относятся следующие: величина обратимой деформации εr, величина упругой отдачи величина εel, величина полной обратимой деформации (εelr), величина обратимого эффекта εTW, реактивное напряжение σr, характеристические температуры мартенситных превращений Мн (температура начала мартенситного превращения), Мк (температура окончания мартенситного превращения), TR (температура R-превращения), Ан (температура начала обратного мартенситного превращения), Ак (температура окончания обратного мартенситного превращения), (температура начала восстановления формы), (температура окончания восстановления формы).

Функциональные свойства (ФС) СПФ, в том числе параметры ЭПФ, определяются составом и структурой сплава. При наведении ЭПФ значительное влияние оказывают параметры внешних воздействий: вид деформации (растяжение - сжатие, кручение, изгиб), величина полной наводимой деформации и нагрузки и пр.

Известен способ наведения ЭПФ и ОЭПФ [В.И. Зельдович, Г.А. Собянина, О.С. Ринкевич. Влияние степени деформации на эффект памяти формы и структуру мартенсита в никелиде титана. Дилатометрические эффекты мартенситных превращений. ФММ, 1996 г, том 81, выпуск 3, стр. 107-116 (г. Свердловск)], в соответствии с которым в сплаве Ti - 50,5% Ni, подвергнутом рекристаллизационному отжигу при 800°С, ЭПФ и ОЭПФ наводили прокаткой и растяжением. Деформацию наводили при комнатной температуре, что соответствует двухфазному состоянию В2+В19', со степенями полной наводимой деформации εt=4,7-16%. Максимальная величина обратимой деформации εr=4,3% была получена при εt=12%, максимальная величина ОЭПФ εTW=1,6% - при εt=16%. В известном способе реализуется лишь один механизм повышения свойств - наведение («тренировка») ЭПФ.

В качестве наиболее близкого аналога (прототип) выбран способ обработки сплава Ti-50,7 ат.% Ni с эффектом памяти формы и обратимым эффектом памяти формы, включающий термомеханическую обработку, рекристаллизационный отжиг при температуре 700°С в течение 0,20-120 мин, а затем отжиг при температуре 350-500°С в течение 1,5-10 ч, а наведение ЭПФ и ОЭПФ осуществляют путем заневоливания сплава по схеме изгиба с деформацией 12-20% при температуре Ак-10≤Т≤Ак+10, выдержки при этой температуре 0,25-5 мин, охлаждения до температуры окончания мартенситного превращения, после чего сплав разгружают и термоциклируют в интервале температур от Ак до -196°C с выдержками 0,25-5 мин [Патент РФ 2476619. Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат. % с эффектом памяти формы и обратимым эффектом памяти формы (варианты)]. Известный способ позволяет реализовать величину обратимой деформации εr=14,5%.

В известном способе реализуются два механизма повышения функциональных свойств: создание рекристаллизованной структуры (при температуре 700°С) с выделениями фазы Ti3Ni4 (при старении в интервале температур 350-500° в течение 1,5-10 ч) и новая схема наведения ЭПФ.

В известном способе наведение ЭПФ (деформацию) осуществляют при фиксированной температуре выше температуры Ак, т.е. когда сплав находится в состоянии метастабильного аустенита. Деформация набирается за счет переориентации аустенита, ориентации R-фазы, образования ориентированного мартенсита напряжений и его двойникования. При этом в процессе охлаждения под нагрузкой ниже температуры окончания мартенситного превращения ориентированный мартенсит напряжения стабилизируется. После отжига при 700°С, когда размер рекристаллизованного зерна аустенита достигает 9 мкм, дислокационный предел текучести снижается, развитие пластической деформации аустенита становится определяющим фактором в управлении ЭПФ, что не позволяет реализовать более высокие значения данного параметра.

Раскрытие изобретения. Технический результат, на который направлено предложенное изобретение, является разработка способа деформационно-термической обработки сплавов с памятью формы (СПФ) на основе никелида титана с содержанием никеля 49-51 ат. % с ЭПФ. Повышение величины обратимой деформации сплавов с ЭПФ Ti -Ni с содержанием никеля 49-51 ат. % реализуется за счет совместного влияния следующих факторов: создание мелкозернистой рекристаллизованной структуры и за счет этого увеличения разницы между дислокационным и фазовым пределом текучести и нового способа термомеханического наведения ЭПФ и ОЭПФ, которое осуществляют путем нагрева до температуры 100-200°С, охлаждения до температуры начала прямого В2→R - превращения (температура TR), деформации при этой температуре на 12-20% выдержки при этой температуре 0,5-3 мин, охлаждения до температуры окончания мартенситного превращения (-196°С), разгружения и нагрева до восстановления формы.

Технический результат достигается следующим образом.

Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат. % с эффектом памяти формы включает термомеханическую обработку заготовки, термомеханическое наведение эффекта памяти формы, разгружение и нагрев для восстановления формы. Перед термомеханической обработкой заготовку подтвергают рекристаллизационному отжигу и закалке, а в качестве термомеханической обработки проводят низкотемпературную термомеханическую обработку путем многопроходной деформациии при температуре 18-24°С до получения накопленной степени деформации 42-60%. Затем осуществляют деформирование в заданную форму, ее фиксацию и рекристаллизационный отжиг в интервале температур 550-650°С в течение 30-70 мин, термомеханическое наведение эффекта памяти осуществляют путем нагрева выше температуры Ак обратного мартенситного превращения, охлаждения до температуры начала прямого В2→R превращения, деформации при этой температуре на 21-25% с выдержкой при этой температуре 0,5-3 мин, охлаждения до температуры окончания мартенситного превращения -196°С, выдержки при этой температуре 0,5-3 мин.

Краткое описание чертежей Изобретение поясняется чертежами, где на фиг. 1 показана схема наведения ЭПФ в сплаве Ti - 50,7%Ni, подвергнутом НТМО с накопленной деформаций 0,6 и рекристаллизационному отжигу при температуре 600°С для реализации предельно достижимого комплекса функциональных свойств (зубчатая линия - нагружение, двойная линия - выдержка в нагруженном состоянии, одинарная линия - нагрев/охлаждение после снятия нагрузки); ТВФ - температура восстановления формы; на фиг. 2 показана кривая формоизменения при наведении по схеме через R-B19' - превращение: 1 - нагружение; 2 - охлаждение под нагрузкой; 3 - упругая отдача после разгрузки (εe1); 4 - формовосстановление после нагрева; 5-6 обратимый эффект памяти формы (εTW). Предварительный нагрев не показан. Обозначения других параметров: εt - полная наводимая деформация; εi - наведенная деформация, εf - остаточная деформация. εr - обратимая деформация.

Технический результат достигается также тем, что сплав, подвергнутый описанной выше обработке, подвергают термомеханическому наведению ЭПФ и ОЭПФ, которое осуществляют следующим образом: материал, находящийся при комнатной температуре, нагревают до температуры 100-200°С, выдерживают при этой температуре 0,5-3 мин, затем охлаждают до температуры TR начала прямого В2→R - превращения, которую определяют по результатам дифференциальной сканирующей калориметрии, деформируют при этой температуре на 21-25%, выдерживают при этой температуре 0,5-3 мин, затем, не снимая нагрузки, охлаждают до температуры окончания мартенситного превращения (0-196°С), выдерживают при этой температуре, после чего освобождают от нагрузки, фиксируют величину упругой отдачи и нагревают до восстановления формы (Фиг. 1). В процессе нагрева фиксируют температуры начала и окончания восстановления формы . После окончания восстановления формы измеряют величину ЭПФ εr и остаточной деформации. При последующем перемещении образца в жидкий азот измеряют величину ОЭПФ εTW.

То есть в предлагаемом способе наведения ЭПФ осуществляется при деформации через интервал превращений R→В19'. Деформация в данном случае набирается за счет переориентации R-фазы, образования ориентированного мартенсита напряжений и его стабилизации в процессе охлаждения под нагрузкой. Предложенная термообработка обеспечивает получение рекристаллизованной структуры со средним размером рекристаллизованного зерна не более 5,5 мкм.

Поставленная цель достигается также тем, что при наведении ЭПФ сплав деформируют по схеме изгиба со степенями деформации в интервале 21-25%.

Поставленная цель достигается также тем, что время выдержки при заневоливании составляет 0,5-3 мин.

Предложенный способ с проведением ТМО позволяет реализовать величину обратимой деформации εr=18,5% (при εt=23,3%).

Таким образом, предложенная совокупность признаков способа позволяет получить новый эффект, приводящий к значительному повышению величины обратимой деформации СПФ. Это позволяет сделать вывод о соответствии предлагаемого способа критерию «изобретательский уровень».

Способ осуществляют следующим образом. На первом этапе исходную заготовку, в частности, из сплава титан-никель (в диапазоне составов от Ti - 49 ат. % Ni до Ti - 51% ат. Ni) подвергают рекристаллизационному отжигу при 700°С в течение 20-30 мин и закаливают в воду, затем подвергают многопроходной пластической деформации, в частности, например, волочением или прокаткой за несколько проходов, до получения суммарной накопленной степени деформации 42-60% в интервале температур 18-24°С. Такую деформацию получить за один проход не представляется возможным по двум причинам: 1) технологические возможности волочильного оборудования позволяют осуществлять холодную деформацию за один проход не более 15%; 2) неизбежное разрушение сплава.

Выбор указанного диапазона составов сплавов Ti-Ni обусловлен тем, что при содержании Ni ниже 49 ат. % Ni в сплаве присутствует в значительном количестве глобулярная фаза состава Ti2Ni (образующаяся в процессе выплавки), которая сильно ухудшает все ФС свойства. В сплаве с содержанием Ni выше 51 ат. % Ni в сплаве в процессе старения выделяется фаза Ti3Ni4 очень крупного размера и в большом количестве, наличие которой ограничивает объем мартенситных превращений.

Суммарная накопленная деформация должна находиться в диапазоне 42-60%, что обеспечивает создание большого количества центров зарождения для образования рекристаллизованного зерна и, как следствие, получение мелкозернистой структуры. При величине накопленной деформации менее 42% центров зарождения будет недостаточное количество, что приведет к получению рекристаллизованного зерна большого размера; при превышении деформации 60% начинается аморфизация структуры, что при последующем отжиге может привести к получению нанокристаллической структуры.

Деформацию следует осуществлять при комнатной температуре (температуре воздуха в цеху) 18-24°С. Температура ниже 18°С может приводить к разрушению материала из-за низкой технологической пластичности, а использование температуры выше 25°С сопряжено со специальной задачей нагрева материала, который существующие технологии не позволяют контролировать при диаметре 0,2-0,5 мм конечного продукта - проволоки. Кроме того, выбранный температурный диапазон деформации позволяет получить максимальное значение суммарной накопленной материалом деформации.

Следующий этап включает деформирование материала в заданную форму, ее фиксацию и рекристаллизационный отжиг в интервале температур 550-650°С в течение 30-70 мин, в течение которого протекают процессы рекристаллизации и происходит запоминание формы.

При температуре ниже 550°С процесс рекристаллизации в данном материале не идет, при температуре выше 650°С размер рекристаллизованного зерна может превысить 5,5 мкм. Время выдержки при старении менее 30 мин недостаточно для завершения процесса рекристаллизации, а время выдержки более 70 мин приводит росту размера рекристаллизованного зерна вследствие начала процесса собирательной рекристаллизации.

Размер рекристаллизованного зерна должен находиться в диапазоне 1-5,5 мкм. При размере зерна менее 1 мкм прямое мартенситное превращение будет подавлено из-за размерного фактора (что приведет к деградации всех функциональных свойств); рост зерна более 5,5 мкм приводит к снижению дислокационного предела текучести материала и, как следствие, к увеличению остаточной деформации.

На следующем этапе осуществляется собственно наведение ЭПФ. Образец нагревают выше температуры Ак обратного мартенситного превращения, после чего охлаждают до температуры начала прямого B2-R-превращения, деформируют при этой температуре на 21-25% на специальной оправке, выдерживают при этой температуре в заневоленном состоянии 0,25-3 мин, постепенно охлаждают до температуры окончания мартенситного превращения (-196°С), выдерживают при этой температуре в заневоленном состоянии 0,25-3 мин, после чего освобождают. Измеряют наведенную деформацию εi. Образец постепенно нагревают до температуры , которая несколько выше исходной температуры Ак (до наведения ЭПФ). Измеряют величину остаточной деформации εf. Определяют величину обратимой деформации εrif.

Выбор температурного интервала обусловлен следующими соображениями. Заневоливание материала должно осуществляться в области существования R-фазы: набор деформации в этом случае будет частично происходить за счет переориентации образовавшейся R-фазы и образования мартенсита напряжений, который стабилизируется при последующем охлаждении материала в заневоленном состоянии, что позволяет получить максимально возможное значение обратимой деформации εr. Заневоливание материала выше температуры начала В2-R-превращения может привести к пластической деформации В2-аустенита, что приведет к увеличению остаточной (необратимой) деформации εf и, как следствие, снижению εr.

Заневоливание материала со степенью деформации менее 21% позволяет реализовать значения εr не более 14,7%; заневоливание материала со степенью деформации более 25% приводит к накоплению остаточной деформации и разрушению материала.

Время выдержки менее 0,25 мин недостаточно для прогрева/охлаждения сплава на требуемую температуру; время выдержки более 3 мин приводит к релаксации напряжений и увеличению остаточной деформации.

Пример №1 конкретного выполнения

Исходным материалом является проволока диаметром 0,45 мм сплава Ti - 50,7%Ni. Проволоку подвергают рекристаллизационному отжигу при температуре 700°С в течение 20 мин и закаливают в воде. Затем проволоку подвергают многопроходной деформации волочением при температуре 18-24°С за 5-6 проходов до диаметра 0,3 мм (т.е. суммарная накопленная степень деформации составляет 30%). Проволоку очищают от графитовой смазки, разрезают на прямые мерные заготовки, укладывают в специальную матрицу, в которой формируют образцы и подвергают отжигу в муфельной печи при температуре 600°С в течение 1 ч. Окисный слой удаляют травлением. После зачистки и травления диаметр проволоки уменьшается до 0,28 мм. Образцы нагревают до температуры 100°С, выдерживают при этой температуре 30 сек, охлаждают до температуры 10°С, выдерживают при этой температуре 30 сек, фиксируют на специальной цилиндрической оправке диаметром 1,2 мм и изгибают при этой температуре вокруг оправки на полный оборот (величина полной наводимой деформации εt при этом составляет 23,3%); выдерживают при этой температуре в течение 30 сек. Образец на оправке постепенно охлаждают до температуры -196°С и выдерживают при этой температуре 30 сек, после чего образец снимают с оправки. Измеряют наведенную деформацию εi: она равна 18,6%. Далее образец постепенно нагревают до температуры 60°С и измеряют величину остаточной деформации: εf=0,3%. Вычисляют величину обратимой деформации: εrif=18,4% и степень восстановления формы: R=εri×100%=98,3%.

Образец охлаждают до температуры -196°С и измеряют величину ОЭПФ: εTW=2,5% и критерий эффективности ОЭПФ: η=εTWr×100%=13,6%.

Предлагаемый способ позволяет реализовать величину обратимой деформации εr=18,4%, недостижимый при применении известных способов и превышающий кристаллографический ресурс деформации решетки при мартенситном превращении в 1,75 раза.

Способ обработки сплавов титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы, включающий термомеханическую обработку заготовки, термомеханическое наведение эффекта памяти формы, разгружение и нагрев для восстановления формы, отличающийся тем, что перед термомеханической обработкой заготовку подтвергают рекристаллизационному отжигу и закалке, а в качестве термомеханической обработки проводят низкотемпературную термомеханическую обработку путем многопроходной деформациии при температуре 18-24°С до получения накопленной степени деформации 42-60%, затем осуществляют деформирование в заданную форму, ее фиксацию и рекристаллизационный отжиг в интервале температур 550-650°С в течение 30-70 мин, термомеханическое наведение эффекта памяти осуществляют путем нагрева выше температуры А обратного мартенситного превращения, охлаждения до температуры начала прямого B2→R превращения, деформации при этой температуре на 21-25% с выдержкой при этой температуре 0,5-3 мин, охлаждения до температуры окончания мартенситного превращения -196°С, выдержки при этой температуре 0,5-3 мин.
Способ температурно-деформационного воздействия на сплавы титан-никель с содержанием никеля 49-51 ат.% с эффектом памяти формы
Источник поступления информации: Роспатент

Показаны записи 61-70 из 328.
25.08.2017
№217.015.a67a

Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Изобретение относится к области многопереходных фотоэлектрических преобразователей (ФЭП), применяемых для солнечных батарей и фотоприемников космического и иного назначения. Монолитный кремниевый фотоэлектрический преобразователь содержит диодные ячейки с расположенными в них перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002608302
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a6f8

Преобразователь оптических и радиационных излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию и может быть использовано во взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах, сенсорах, расположенных в труднодоступных...
Тип: Изобретение
Номер охранного документа: 0002608311
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a8d8

Способ очистки цианистых растворов от комплексов цветных металлов перед процессом сорбции

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5...
Тип: Изобретение
Номер охранного документа: 0002611237
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
Показаны записи 61-70 из 190.
25.08.2017
№217.015.a67a

Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Изобретение относится к области многопереходных фотоэлектрических преобразователей (ФЭП), применяемых для солнечных батарей и фотоприемников космического и иного назначения. Монолитный кремниевый фотоэлектрический преобразователь содержит диодные ячейки с расположенными в них перпендикулярно...
Тип: Изобретение
Номер охранного документа: 0002608302
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a6f8

Преобразователь оптических и радиационных излучений и способ его изготовления

Настоящее изобретение относится к области преобразователей энергии оптических и радиационных излучений в электрическую энергию и может быть использовано во взрывоопасных помещениях - шахтах, в беспилотных летательных аппаратах, ночных индикаторах, сенсорах, расположенных в труднодоступных...
Тип: Изобретение
Номер охранного документа: 0002608311
Дата охранного документа: 17.01.2017
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a8d8

Способ очистки цианистых растворов от комплексов цветных металлов перед процессом сорбции

Изобретение относится к отчистке растворов цианирования, полученных при гидрометаллургической переработке концентратов, содержащих благородные и цветные металлы, от цианистых комплексов цветных металлов. Способ включает обработку растворов цианирования гипохлоритом кальция в концентрации от 4,5...
Тип: Изобретение
Номер охранного документа: 0002611237
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a916

Способ определения примесей в каменном и буром угле и торфе

Изобретение относится к аналитической химии, а именно к способам определения примесей в каменном и буром угле и торфе. Для этого применяют вскрытие пробы смесью концентрированных хлороводородной и азотной кислот (3:1) при соотношении навески пробы к смеси кислот 1:(100-120) при нагревании в...
Тип: Изобретение
Номер охранного документа: 0002611382
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a97e

Способ получения органо-минерального полимера на основе сапропеля

Изобретение относится к сельскому хозяйству. Способ получения органо-минерального полимера из сапропеля включает измельчение сапропеля естественной влажности до гомогенного состояния, определение его влажности и показателя pH, механохимическую активацию полученной смеси при помощи добавления к...
Тип: Изобретение
Номер охранного документа: 0002611816
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aa74

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Мокрое измельчение стехиометрической смеси карбоната стронция и оксида железа проводят в кислой среде, содержащей полиакриловую кислоту и изопропиловый спирт при...
Тип: Изобретение
Номер охранного документа: 0002611814
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b2ab

Способ получения покрытий из нанолистов нитрида бора

Изобретение относится к области получения покрытий, содержащих двумерные керамические структуры, а именно нанолисты гексагонального нитрида бора, имеющие толщину 1-10 нм и характерный линейный размер от 100 нм до 5 мкм, которые могут применяться в качестве носителя катализаторов, а также для...
Тип: Изобретение
Номер охранного документа: 0002613996
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b2fc

Способ контроля работы воздушной фурмы доменной печи с теплоизоляцией со стороны дутьевого канала

Изобретение относится к области металлургии и может быть использовано при эксплуатации воздушных фурм доменных печей с теплоизоляцией со стороны дутьевого канала. В способе контроля состояния теплоизоляции со стороны дутьевого канала воздушной фурмы доменной печи определяют разность расходов...
Тип: Изобретение
Номер охранного документа: 0002613834
Дата охранного документа: 21.03.2017
+ добавить свой РИД