×
25.08.2017
217.015.a735

Результат интеллектуальной деятельности: Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины включает нанесение ионно-лучевым распылением покрытия с необходимым процентным соотношением металлической и керамической фаз, при этом процентное соотношение металлической и керамической фаз определяют с помощью нейронной сети, для чего наносят покрытия с заданным шагом процентного соотношения фаз металл-керамика, изменяющимся в покрытии от нуля до максимума, определяют значения микротвердости нанесенных покрытий, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, тестируют полученную нейросетевую модель путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, экспериментально измеренных факторов нейросетевой модели, включающих микротвердость металлического покрытия, микротвердость керамического покрытия, концентрацию металлической фазы в композите и микротвердость нанокомпозитного покрытия в качестве выходного параметра модели, с последующим их определением при помощи полученной нейросетевой модели и сравнения полученных теоретических данных с исходными экспериментальными значениями, затем в искусственную нейронную сеть вводят значения микротвердости металлического и керамического покрытия, их процентное соотношение в получаемом покрытии и при помощи искусственной нейронной сети рассчитывают значение микротвердости металл-керамического нанокомпозитного покрытия при введенном процентном соотношении металлической и керамической фаз. Изобретение направлено на повышение износостойкости и стабильности параметров покрытия с одновременным снижением временных и материальных затрат. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами, поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Весьма перспективным направлением является применение не просто наноструктурированных материалов, а нанокомпозитных материалов, сочетающих в себе металлическую и керамическую фазы, характерные размеры которых составляют единицы - десятки нанометров. Механические свойства таких наноструктурированных материалов в значительной степени зависят от концентрационного соотношения между металлической и керамической фазами. Изменение концентрации одной из фаз в композите позволяет менять значение их механических характеристик в достаточно широких пределах. С другой стороны, для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы, т.к. характеристики получаемого покрытия изменяются нелинейно, что приводит к значительным временным и материальным затратам.

Известен способ получения наноструктурного покрытия из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x, включающий осаждение композита ионно-лучевым распылением с обеспечением образования гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрацию металлической фазы при распылении выбирают в пределах 20-40 ат. %. (Патент РФ №2515600, заявка №2011148577/02 от 29.11.2011, МПК: С23С 14/46, С23С 14/06, В82В 3/00 - прототип).

Основным недостатком данного способа является то, что для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы.

Данные обстоятельства обуславливают целесообразность применения методов обработки экспериментальных данных для построения экспериментальных факторных моделей, которые не раскрывают физической сущности явлений, но позволяют описывать и, самое главное, прогнозировать практически важные свойства материалов в некоторой ограниченной области факторного пространства.

Искусственные нейронные сети (ИНС) являются мощным и универсальным алгоритмом аппроксимации (см., например, Барский А.Б. Ведение в нейронные сети, М.: Интернет-Университет информационных технологий, 2011; Калацкая Л.В., Новиков В.Α., Садов В.С. Организация и обучение искусственных нейронных сетей: Экспериментальное учеб. пособие. - Минск: Изд-во БГУ, 2003. - 72 с. Галушкин А.И. Синтез многослойных систем распознавания образов. - М.: Энергия, 1974).

С одной стороны, искусственные нейронные сети слабочувствительны к структуре экспериментальных данных, а с другой - способны выявлять зависимости между входными и выходными данными, а также выполнять обобщение на основе сравнительно небольшого массива экспериментальных результатов. Нейросетевые алгоритмы способны аппроксимировать произвольную многофакторную зависимость с любой точностью при соответствующей регуляризации процедуры настройки параметров аппроксимационного уравнения. В случае успешного обучения такая сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также на основе неполных или частично искаженных данных. Вследствие этого нейронные сети можно рассматривать не только как инструмент аппроксимации, но и как способ прогнозирования физических свойств реальных объектов на основе экспериментальных данных.

Задачей предложенного технического решения является устранение лишних временных и материальных затрат посредством создания способа определения концентрации компонент в наноструктурном покрытии из гранулированного композита «металл-керамика» и получение собственно самого наноструктурного покрытия из гранулированного композита «металл-керамика», применение которого позволит обеспечить повышенную износостойкость и высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается тем, что в предложенном способе получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины, включающем нанесение ионно-лучевым распылением покрытия с необходимым процентным содержанием металлической и керамической фаз, согласно изобретению процентное соотношение металлической и керамической фаз для нанесения наноструктурного покрытия с заданным значением микротвердости определяют с помощью нейронной сети, для чего наносят покрытия с заданным шагом процентного соотношения фаз металл-керамика, изменяющимся в покрытии от нуля до максимума, определяют значения микротвердости нанесенных покрытий, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, тестируют полученную нейросетевую модель путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, экспериментально измеренных факторов нейросетевой модели, включающих микротвердость металлического покрытия Hм, микротвердость керамического покрытия Hк , концентрацию металлической фазы в композите См и микротвердость нанокомпозитного покрытия H в качестве выходного параметра модели, с последующим их определением при помощи полученной нейросетевой модели и сравнения полученных теоретических данных с исходными экспериментальными значениями, затем в искусственную нейронную сеть вводят значения микротвердости металлического и керамического покрытия, их процентное соотношение в получаемом покрытии, и при помощи искусственной нейронной сети рассчитывают значение микротвердости металл-керамического нанокомпозитного покрытия при введенном процентном соотношении металлической и керамической фаз.

В варианте применения способа после сравнения полученных теоретических данных с исходными экспериментальными значениями проводят корректировку полученной нейросетевой модели, после чего тестируют полученную искусственную нейронную сеть аналогичным образом до получения требуемой сходимости результатов.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показаны концентрационные зависимости параметра, характеризующего механические свойства композитов CoFeZr-Al2O3, с указанием точек, полученных экспериментальными и аналитическими исследованиями, на фиг. 2 - зависимости для композитов Fe-Al2O3, на фиг. 3 - зависимости для композитов Fe-SiO2, на фиг. 4 - зависимости для композитов Co-CaF.

На всех фигурах показана концентрационная зависимость микротвердости композитов, измеренная методом Кнупа (символы) и полученная с помощью нейросетевой модели (линия).

Предложенный способ реализуется следующим образом.

Экспериментальные данные представляли собой результат исследования микротвердости нанокомпозитных покрытий металл-керамика, отличающихся друг от друга, как элементным составом, так и соотношением фаз. В качестве факторов модели приняты экспериментально измеренные величины: микротвердость чистого металлического покрытия (Нм), микротвердость чистого керамического покрытия (Нк) и концентрация металличекой фазы в композите (См), при этом в качестве выходного параметра модели используется значение микротвердости композитного покрытия (Н).

Все данные получены при исследовании нанокомпозитов, которые, в свою очередь, были получены по единой технологии, в одинаковых условиях на одном и том же оборудовании. Покрытия представляли собой тонкие пленки толщиной 5-7 мкм, нанесенные на поверхность полированных пластин СТ-50. Осаждение покрытий производилось с помощью метода ионно-лучевого распыления составных мишеней в атмосфере аргона и последующего осаждения выбитых атомов на поверхность подложки. Образование композитной структуры в напыляемых покрытиях происходило вследствие процессов самоорганизации. Наличие композитной структуры у исследованных покрытий непосредственно подтверждалось данными просвечивающей электронной микроскопии.

Для структурных исследований композиты наносились на монокристаллические подложки из NaCl с последующим отделением, а длительность процесса осаждения составляла несколько минут. Микротвердость композитных покрытий исследовалась методом индентирования алмазной пирамидкой. Поскольку толщина покрытий находилась в интервале 5-7 мкм, для измерений использовалась алмазная пирамидка Кнупа. Все измерения микротвердости проводились при одинаковой нагрузке на индентор, составлявшей 0.49 Н.

При помощи искусственной нейронной сети рассчитывают значения микротвердости получаемого нанокомпозитного покрытия металл-керамика при возможном соотношении металлической и керамической фаз, при этом для формирования отображения: H=fNм,Hк,cм) используют стандартную структуру многослойного персептрона и формируют персептрон, после чего выход сети рассчитывают по формуле: , при этом в качестве функции активации используют логистическую сигмоиду , где: , после чего определяют выходы нейронов первого скрытого слоя следующим образом: , где , затем входные переменные приводят в диапазон [0;1] согласно минимаксным формулам: x1=0.01⋅cм; х2=0.003636⋅Нм-2.090909; х3=0.00125⋅Нк-0.125, при этом выход сети связывают с искомой величиной H соотношением: ,

где: bkij - значение порога активации i (j)-го нейрона k-го скрытого слоя нейронной сети; b0 - значение порога активации выходного нейрона сети; b - вектор порогов активации нейронов сети; см - концентрация металлической фазы в нанокомпозите, ат. %; ED - суммарная квадратическая ошибка обучения сети; EW - сумма квадратов весов сети; fs - функция активации j-го нейрона - логистическая сигмоида; F - целевая функция обучения сети; Н - микротвердость композита с определенной концентрацией металлической фазы, ед. Кнупа; Hk и НМ - микротвердость чистой керамической и металлической фазы соответственно, ед. Кнупа; K - энергетический фактор; q - количество нейронов в случае одного скрытого слоя многослойного персептрона; νi - вес нейрона выходного слоя, соответствующий i-му нейрону последнего скрытого слоя; νil - вес соединения i-го нейрона первого скрытого слоя с l-м входом; v - матрица весов соединений входных переменных и нейронов первого скрытого слоя; wji - нелинейно входящий в модель нейронной сети вес между j-м нейроном второго скрытого слоя и i-м нейроном первого скрытого слоя; w - матрица весов соединений нейронов первого и второго скрытых слоев персептрона; y - выходное значение нейронной сети, к - керамический; м - металлический; i - номер нейрона первого скрытого слоя; j - номер нейрона второго скрытого слоя; l - номер входной переменной; n - количество входных переменных.

Проведенные экспериментальные и аналитические исследования на натурных образцах подтвердили достаточно хорошую сходимость экспериментальных данных с теоретическими данными, полученными при использовании заложенной математической модели, что показывает работоспособность предложенного способа в заданном интервале.

Использование предложенного технического решения позволит построить регрессионные зависимости, открытые для новых данных, то есть созданные модели могут пополняться и уточняться за счет введения новых факторов, что усложняет их структуру, но при этом повышает их адекватность.


Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины
Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины
Источник поступления информации: Роспатент

Показаны записи 531-540 из 738.
13.01.2017
№217.015.7fcb

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов на основе топинамбура. Пюреобразные консервы на основе топинамбура содержат топинамбур, редьку черную, шрот семян тыквы, пюре гороха, пюре ягод терна, CO-экстракт листьев березы и CO- экстракт хрена при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002599796
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7fd8

Способ производства фруктового соуса

Изобретение относится к пищевой промышленности, а именно - к технологии производства соусов. Способ производства фруктового соуса включает заливку молотого шрота семян тыквы питьевой водой и выдержку его для набухания, смешивание шрота, алычового, сливового, айвового пюре, сахара и соли,...
Тип: Изобретение
Номер охранного документа: 0002599806
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7fe1

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура содержат в мас.ч.: топинамбур - 512, шрот семян тыквы - 32,5, мякоть кабачка - 420 и столовую свеклу - 32,5, СО - экстракт полыни - 0,025-2,5, вода - до выхода целевого продукта...
Тип: Изобретение
Номер охранного документа: 0002599812
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ff1

Приправа

Изобретение относится к композиции приправы. Новая приправа содержит соевую пасту, пюре из топинамбура и из редиса, сахар, соль, растительное масло и СО-экстракты семян моркови, семян горчицы, рисовой мучки, фенхеля, базилика эвгенольного, тимьяна ползучего, лавра благородного, полыни и листьев...
Тип: Изобретение
Номер охранного документа: 0002599799
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8005

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура содержат топинамбур, морковь, шрот семян тыквы, соль, воду и СО экстракт хрена. При этом соотношение расходов компонентов составляет, мас.ч.: топинамбур - 450, морковь - 358-425,...
Тип: Изобретение
Номер охранного документа: 0002599803
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8022

Приправа

Изобретение относится к композиции приправы. Новая приправа содержит соевую пасту, пюре из топинамбура и из редиса, сахар, соль, растительное масло и СО-экстракты семян моркови, семян горчицы, рисовой мучки, фенхеля, базилика эвгенольного, тимьяна ползучего, лавра благородного, облепихи и...
Тип: Изобретение
Номер охранного документа: 0002599797
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.802c

Фруктовый соус

Изобретение относится к технологии производства соусов. Фруктовый соус содержит алычовое пюре, сливовое пюре, айвовое пюре, шрот семян тыквы, сахар, соль, семена укропа, кориандр, перец красный жгучий, воду, а также дополнительно CO-экстракт листьев смородины, CO-экстракт листьев березы,...
Тип: Изобретение
Номер охранного документа: 0002599798
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8035

Приправа

Изобретение относится к композиции приправы. Новая приправа содержит соевую пасту, пюре из топинамбура и из редиса, сахар, соль, растительное масло и CO-экстракты семян моркови, семян горчицы, рисовой мучки, фенхеля, базилика эвгенольного, тимьяна ползучего, лавра благородного, а также...
Тип: Изобретение
Номер охранного документа: 0002599801
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8151

Способ производства фруктового соуса

Изобретение относится к пищевой промышленности. Способ производства фруктового соуса включает заливку молотого шрота семян тыквы питьевой водой в соотношении по массе около 1:5 и выдержку его для набухания, смешивание шрота, алычового пюре, айвового mope, сахара и соли, уваривание полученной...
Тип: Изобретение
Номер охранного документа: 0002602177
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82de

Фруктовый соус

Изобретение относится к технологии производства соусов. Фруктовый соус содержит (масс.ч.): алычевое пюре, в пересчете на 11% содержание сухих веществ, - 506,1, сливовое пюре, в пересчете на 11% содержание сухих веществ, - 46,8, айвовое пюре, в пересчете на 11% содержание сухих веществ, - 46,8,...
Тип: Изобретение
Номер охранного документа: 0002601797
Дата охранного документа: 10.11.2016
Показаны записи 531-540 из 817.
13.01.2017
№217.015.7a99

Фруктовый соус

Изобретение относится к пищевой промышленности. Фруктовый соус содержит шрот семян тыквы, воду, алычовое пюре, айвовое пюре, сахар и соль, уваренные в составе упомянутой смеси до достижения содержания сухих веществ около 22%, семена укропа, гвоздики, кориандра, перца красного жгучего и перца...
Тип: Изобретение
Номер охранного документа: 0002600615
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7ae2

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Способ предусматривает подготовку рецептурных компонентов, протирку и финиширование топинамбура и моркови, CO экстракт хрена, CO экстракт смородины, заливку питьевой водой и выдержку для набухания молотого шрота семян тыквы,...
Тип: Изобретение
Номер охранного документа: 0002600588
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7aee

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура, содержат, мас. ч.: топинамбур - 512, бананы - 540, шрот семян тыквы - 16,5, шрот семян кабачка - 16, вода до выхода целевого продукта - 1000, CO-экстракт листьев смородины -...
Тип: Изобретение
Номер охранного документа: 0002600587
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7b04

Приправа

Изобретение относится к композиции приправы. Новая приправа содержит соевую пасту, пюре из топинамбура, редиса и ягод крыжовника, сахар, соль, растительное масло и CO-экстракты семян моркови, семян горчицы, рисовой мучки, фенхеля, базилика эвгенольного, тимьяна ползучего, лавра благородного в...
Тип: Изобретение
Номер охранного документа: 0002600629
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7b14

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура содержат мас.ч.: топинамбур - 350, морковь - 358-425, мякоть ягод терна - 75-125, редька черная - 75-125, шрот семян тыквы - 28, соль - 5, СО экстракт хрена - 0,01-0,04, CO экстракт...
Тип: Изобретение
Номер охранного документа: 0002600589
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7b78

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура содержат, мас.ч: топинамбур - 480, шрот семян тыквы - 32,5, редька черная - 390, столовая свекла - 32,5, пюре гороха - 78,4, вода до выхода целевого продукта 1000. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002600585
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7b88

Способ производства фруктового соуса

Изобретение относится к пищевой промышленности. Способ предусматривает заливку молотого шрота семян тыквы питьевой водой в соотношении по массе около 1:5 и выдержку для набухания, его смешивание с алычовым пюре, айвовым пюре, сахаром и солью, уваривание до достижения содержания сухих веществ...
Тип: Изобретение
Номер охранного документа: 0002600593
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7bd4

Пюреобразные консервы на основе топинамбура

Изобретение относится к пищевым продуктам, а именно к пюрообразным консервам. Пюреобразные консервы на основе топинамбура содержат, мас. ч.: топинамбур - 450, морковь - 358-425, мякоть ягод терна - 50-75 , шрот семян тыквы - 14, шрот семян кабачка - 14, соль - 5, СО экстракт хрена - 0,01-0,04...
Тип: Изобретение
Номер охранного документа: 0002600590
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7be8

Фруктовый соус

Изобретение относится к пищевой промышленности. Фруктовый соус содержит шрот семян тыквы, воду, алычовое пюре, айвовое пюре, сахар и соль, уваренные в составе упомянутой смеси до достижения содержания сухих веществ около 22%, семена укропа, гвоздики, кориандра, перца красного жгучего и перца...
Тип: Изобретение
Номер охранного документа: 0002600616
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7bec

Способ производства фруктового соуса

Изобретение относится к пищевой промышленности. Способ предусматривает заливку молотого шрота семян тыквы питьевой водой в соотношении по массе около 1:5 и выдержку для набухания, его смешивание с алычовым пюре, айвовым пюре, сахаром и солью, уваривание до достижения содержания сухих веществ...
Тип: Изобретение
Номер охранного документа: 0002600591
Дата охранного документа: 27.10.2016
+ добавить свой РИД