×
25.08.2017
217.015.a6fe

Результат интеллектуальной деятельности: Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума. Затем определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Н), микротвердость керамического покрытия (Н) и концентрацию металлической фазы в композите (С), с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н), и сравнения полученного теоретического значения с исходными экспериментальными данными. Затем вводят в упомянутую искусственную нейронную сеть данные о химическом составе металлической и керамической фаз, их процентном соотношении в получаемом покрытии и, при помощи искусственной нейронной сети, определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика по соотношению металлической и керамической фаз. В частных случаях осуществления изобретения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами, поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Весьма перспективным направлением является применение не просто наноструктурированных материалов, а нанокомпозитных материалов, сочетающих в себе металлическую и керамическую фазы, характерные размеры которых составляют единицы - десятки нанометров. Механические свойства таких наноструктурированных материалов в значительной степени зависят от концентрационного соотношения между металлической и керамической фазами. Изменение концентрации одной из фаз в композите позволяет менять значение их механических характеристик в достаточно широких пределах. С другой стороны, для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы, т.к. характеристики получаемого покрытия изменяются нелинейно, что приводит к значительным временным и материальным затратам.

Известен способ получения наноструктурного покрытия из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x, включающий осаждение композита ионно-лучевым распылением с обеспечением образования гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрацию металлической фазы при распылении выбирают в пределах 20-40 ат.%. (Патент РФ №2515600, заявка №2011148577/02 от 29.11.2011, МПК: С23С 14/46, С23С 14/06, В82В 3/00 - прототип).

Основным недостатком данного способа является то, что для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы.

Данные обстоятельства обуславливают целесообразность применения методов обработки экспериментальных данных для построения экспериментальных факторных моделей, которые не раскрывают физической сущности явлений, но позволяют описывать и, самое главное, прогнозировать практически важные свойства материалов в некоторой ограниченной области факторного пространства.

Искусственные нейронные сети (ИНС) являются мощным и универсальным алгоритмом аппроксимации (см. например, Барский А.Б. Ведение в нейронные сети, М.: Интернет-Университет информационных технологий, 2011; Калацкая Л.В., Новиков В.А., Садов В.С. Организация и обучение искусственных нейронных сетей: Экспериментальное учеб. пособие. - Минск: Изд-во БГУ, 2003. - 72 с. Галушкин А.И. Синтез многослойных систем распознавания образов. - М.: Энергия, 1974).

С одной стороны, искусственные нейронные сети слабочувствительны к структуре экспериментальных данных, а с другой - способны выявлять зависимости между входными и выходными данными, а также выполнять обобщение на основе сравнительно небольшого массива экспериментальных результатов. Нейросетевые алгоритмы способны аппроксимировать произвольную многофакторную зависимость с любой точностью при соответствующей регуляризации процедуры настройки параметров аппроксимационного уравнения. В случае успешного обучения такая сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также на основе неполных или частично искаженных данных. Вследствие этого нейронные сети можно рассматривать не только как инструмент аппроксимации, но и как способ прогнозирования физических свойств реальных объектов на основе экспериментальных данных.

Задачей предложенного технического решения является устранение лишних временных и материальных затрат посредством создания способа определения концентрации компонент в наноструктурном покрытии из гранулированного композита «металл-керамика» и получение собственно самого наноструктурного покрытия из гранулированного композита «металл-керамика», применение которого позволит обеспечить повышенную износостойкость и высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается тем, что в предложенном способе определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз, согласно изобретению, сначала определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытия с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Нм), микротвердость керамического покрытия (Нк) и концентрацию металлической фазы в композите (См), с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н), и сравнения полученного теоретического значения с исходными экспериментальными данными, затем вводят в упомянутую искусственную нейронную сеть химический состав металлической и керамической фаз, их процентное соотношение в получаемом покрытии, и, при помощи искусственной нейронной сети, определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика по соотношению металлической и керамической фаз.

В варианте применения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показаны концентрационные зависимости параметра, характеризующего механические свойства композитов CoFeZr-Al2O3, с указанием точек, полученных экспериментальными и аналитическими исследованиями, на фиг. 2 - зависимости для композитов Fe-Al2O3, на фиг. 3 - зависимости для композитов Fe-SiO2, на фиг. 4 - зависимости для композитов Co-CaF.

На всех фигурах показана концентрационная зависимость микротвердости композитов, измеренная методом Кнупа (символы) и полученная с помощью нейросетевой модели (линия).

Экспериментальные данные представляли собой результат исследования микротвердости нанокомпозитных покрытий металл-керамика, отличающихся друг от друга как элементным составом, так и соотношением фаз. В качестве факторов модели приняты экспериментально измеренные величины: микротвердость чистого металлического покрытия (Нм), микротвердость чистого керамического покрытия (Нк) и концентрация металлической фазы в композите (См), при этом в качестве выходного параметра модели используется значение микротвердости композитного покрытя (Н).

Все данные получены при исследовании нанокомпозитов, которые, в свою очередь, были получены по единой технологии, в одинаковых условиях на одном и том же оборудовании. Покрытия представляли собой тонкие пленки толщиной 5-7 мкм, нанесенные на поверхность полированных пластин СТ-50. Осаждение покрытий производилось с помощью метода ионно-лучевого распыления составных мишеней в атмосфере аргона и последующего осаждения выбитых атомов на поверхность подложки. Образование композитной структуры в напыляемых покрытиях происходило вследствие процессов самоорганизации. Наличие композитной структуры у исследованных покрытий непосредственно подтверждалось данными просвечивающей электронной микроскопии.

Для структурных исследований композиты наносились на монокристаллические подложки из NaCl с последующим отделением, а длительность процесса осаждения составляла несколько минут. Микротвердость композитных покрытий исследовалась методом индентирования алмазной пирамидкой. Поскольку толщина покрытий находилась в интервале 5-7 мкм, для измерений использовалась алмазная пирамидка Кнупа. Все измерения микротвердости проводились при одинаковой нагрузке на индентор, составлявшей 0.49 Н.

Проведенные экспериментальные и аналитические исследования на натурных образцах подтвердили достаточно хорошую сходимость экспериментальных данных с теоретическими данными, полученными при использовании заложенной математической модели, что показывает работоспособность предложенного способа в заданном интервале.

Использование предложенного технического решения позволит построить регрессионные зависимости, открытые для новых данных, то есть созданные модели могут пополняться и уточняться за счет введения новых факторов, что усложняет их структуру, но при этом повышает их адекватность.


Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз
Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз
Источник поступления информации: Роспатент

Показаны записи 721-730 из 738.
12.09.2019
№219.017.ca8c

Парогенератор

Использование: для производства пара. Сущность изобретения заключается в том, что парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива, пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов топлива при...
Тип: Изобретение
Номер охранного документа: 0002699914
Дата охранного документа: 11.09.2019
02.10.2019
№219.017.ce85

Парогенератор

Использование: для производства пара. Сущность изобретения заключается в том, что парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива, пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов топлива при...
Тип: Изобретение
Номер охранного документа: 0002700706
Дата охранного документа: 19.09.2019
02.10.2019
№219.017.d161

Парогенератор

Использование: для производства пара. Сущность изобретения заключается в том, что парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива, пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов топлива при...
Тип: Изобретение
Номер охранного документа: 0002700702
Дата охранного документа: 19.09.2019
24.10.2019
№219.017.d955

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде нескольких коаксиально...
Тип: Изобретение
Номер охранного документа: 0002703793
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9c6

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного компонентов, пояса подачи горячего и холодного компонентов, соединенные с...
Тип: Изобретение
Номер охранного документа: 0002703779
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9ff

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде нескольких коаксиально...
Тип: Изобретение
Номер охранного документа: 0002703791
Дата охранного документа: 22.10.2019
16.01.2020
№220.017.f5d8

Теплообменный аппарат

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Корпус теплообменного аппарата выполнен состоящим из входной, центральной и выходной частей. Центральная часть выполнена в виде полого цилиндра с двумя днищами, а входная и выходная...
Тип: Изобретение
Номер охранного документа: 0002710835
Дата охранного документа: 14.01.2020
31.01.2020
№220.017.fb82

Парогенератор

Изобретение относится к энергетическим установкам. Парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива и пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов при помощи каналов. Пояса подачи компонентов...
Тип: Изобретение
Номер охранного документа: 0002712336
Дата охранного документа: 28.01.2020
28.02.2020
№220.018.070e

Парогенератор

Изобретение относится к энергетическим установкам, производящим пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании водорода или природного газа (ПГ) в кислороде. Парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов...
Тип: Изобретение
Номер охранного документа: 0002715344
Дата охранного документа: 26.02.2020
05.03.2020
№220.018.090b

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного потоков, теплообменные элементы, выполненные в виде нескольких коаксиально...
Тип: Изобретение
Номер охранного документа: 0002715810
Дата охранного документа: 03.03.2020
Показаны записи 721-730 из 817.
25.10.2018
№218.016.958b

Способ увеличения дальности полета артиллерийского снаряда

Изобретение относится к боеприпасам и, в частности, к артиллерийским снарядам. Технический результат - увеличение дальности полета артиллерийского снаряда. Устройство содержит корпус кормового отсека с блоком стабилизаторов и донным газогенератором, воздухозаборное устройство. Корпус кормового...
Тип: Изобретение
Номер охранного документа: 0002670463
Дата охранного документа: 23.10.2018
25.10.2018
№218.016.95f7

Артиллерийский снаряд

Изобретение относится к боеприпасам, в частности к артиллерийскому снаряду. Технический результат – повышение дальности полета артиллерийского снаряда. Устройство содержит корпус с блоком основных стабилизаторов и кормовым отсеком. Внутри корпуса выполнена перегородка. Она разделяет полость...
Тип: Изобретение
Номер охранного документа: 0002670462
Дата охранного документа: 23.10.2018
21.11.2018
№218.016.9f7e

Мыльница

Предложена мыльница, содержащая корпус из двух полых профилированных половинок в виде двух тонкостенных оболочек, взаимодействующих между собой периферийными частями с образованием полости для размещения мыла. Каждая половинка выполнена состоящей из трех элементов: периферийного, промежуточного...
Тип: Изобретение
Номер охранного документа: 0002672842
Дата охранного документа: 19.11.2018
23.11.2018
№218.016.a032

Теплообменный аппарат

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях...
Тип: Изобретение
Номер охранного документа: 0002673119
Дата охранного документа: 22.11.2018
28.11.2018
№218.016.a178

Мыльница

Предложена мыльница, содержащая корпус из двух полых профилированных половинок в виде двух тонкостенных оболочек, взаимодействующих между собой периферийными частями с образованием полости для размещения мыла. Каждая половинка выполнена состоящей из трех элементов, периферийного, промежуточного...
Тип: Изобретение
Номер охранного документа: 0002673429
Дата охранного документа: 26.11.2018
13.12.2018
№218.016.a667

Надкалиберная пучковая граната "вартава" к ручному гранатомету

Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам, к ручному гранатомету. Технический результат – улучшение массово-габаритных характеристик и траектории полета, а также увеличение боевой эффективности. Надкалиберная пучковая граната содержит калиберную часть с...
Тип: Изобретение
Номер охранного документа: 0002674656
Дата охранного документа: 12.12.2018
07.02.2019
№219.016.b740

Форсуночная головка камеры жрд

Изобретение относится к области ракетной техники и может быть использовано при создании форсуночных головок камер жидкостных ракетных двигателей (ЖРД). Форсуночная головка камеры ЖРД содержит корпус головки и огневое днище с установленными в них струйно-центробежными форсунками, имеющими...
Тип: Изобретение
Номер охранного документа: 0002679046
Дата охранного документа: 05.02.2019
07.02.2019
№219.016.b7a2

Струйно-центробежная форсунка

Изобретение относится к области ракетной техники и может быть использовано при создании форсуночных головок камер жидкостных ракетных двигателей (ЖРД). Струйно-центробежная форсунка содержит корпус, состоящий из двух цилиндров разного диаметра, соединенных между собой с образованием кольцевой...
Тип: Изобретение
Номер охранного документа: 0002679047
Дата охранного документа: 05.02.2019
16.02.2019
№219.016.bb89

Мультипликатор гидравлический двустороннего действия

Мультипликатор предназначен для передачи энергии рабочей жидкости с преобразованием ее давления. Мультипликатор содержит корпус, в котором установлены коаксиально расположенные гидроцилиндры низкого и высокого давления с поршнями и с каналами подвода гидравлической жидкости низкого давления,...
Тип: Изобретение
Номер охранного документа: 0002679958
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.c8d9

Рабочее колесо осевой газовой турбины для кислородно-керосинового жидкостного ракетного двигателя

Предлагаемое изобретение относится к области турбостроения, к конструкциям неразъемных рабочих колес осевых газовых турбин, преимущественно турбонасосных агрегатов жидкостных ракетных двигателей. Рабочее колесо осевой газовой турбины кислородно-керосинового жидкостного ракетного двигателя...
Тип: Изобретение
Номер охранного документа: 0002272912
Дата охранного документа: 27.03.2006
+ добавить свой РИД