×
25.08.2017
217.015.a6fe

Результат интеллектуальной деятельности: Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз

Вид РИД

Изобретение

Аннотация: Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума. Затем определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз. На основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Н), микротвердость керамического покрытия (Н) и концентрацию металлической фазы в композите (С), с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н), и сравнения полученного теоретического значения с исходными экспериментальными данными. Затем вводят в упомянутую искусственную нейронную сеть данные о химическом составе металлической и керамической фаз, их процентном соотношении в получаемом покрытии и, при помощи искусственной нейронной сети, определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика по соотношению металлической и керамической фаз. В частных случаях осуществления изобретения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели. Обеспечивается повышенная износостойкость с одновременным снижением себестоимости покрытия и высокая стабильность определяемых параметров, используемых для нанесения покрытия. 1 з.п. ф-лы, 4 ил.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д.

Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами, поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.

Весьма перспективным направлением является применение не просто наноструктурированных материалов, а нанокомпозитных материалов, сочетающих в себе металлическую и керамическую фазы, характерные размеры которых составляют единицы - десятки нанометров. Механические свойства таких наноструктурированных материалов в значительной степени зависят от концентрационного соотношения между металлической и керамической фазами. Изменение концентрации одной из фаз в композите позволяет менять значение их механических характеристик в достаточно широких пределах. С другой стороны, для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы, т.к. характеристики получаемого покрытия изменяются нелинейно, что приводит к значительным временным и материальным затратам.

Известен способ получения наноструктурного покрытия из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x, включающий осаждение композита ионно-лучевым распылением с обеспечением образования гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрацию металлической фазы при распылении выбирают в пределах 20-40 ат.%. (Патент РФ №2515600, заявка №2011148577/02 от 29.11.2011, МПК: С23С 14/46, С23С 14/06, В82В 3/00 - прототип).

Основным недостатком данного способа является то, что для нахождения требуемого соотношения металлической и керамической фаз в покрытии, с целью получения заданных свойств, требуются значительные дорогостоящие экспериментальные работы.

Данные обстоятельства обуславливают целесообразность применения методов обработки экспериментальных данных для построения экспериментальных факторных моделей, которые не раскрывают физической сущности явлений, но позволяют описывать и, самое главное, прогнозировать практически важные свойства материалов в некоторой ограниченной области факторного пространства.

Искусственные нейронные сети (ИНС) являются мощным и универсальным алгоритмом аппроксимации (см. например, Барский А.Б. Ведение в нейронные сети, М.: Интернет-Университет информационных технологий, 2011; Калацкая Л.В., Новиков В.А., Садов В.С. Организация и обучение искусственных нейронных сетей: Экспериментальное учеб. пособие. - Минск: Изд-во БГУ, 2003. - 72 с. Галушкин А.И. Синтез многослойных систем распознавания образов. - М.: Энергия, 1974).

С одной стороны, искусственные нейронные сети слабочувствительны к структуре экспериментальных данных, а с другой - способны выявлять зависимости между входными и выходными данными, а также выполнять обобщение на основе сравнительно небольшого массива экспериментальных результатов. Нейросетевые алгоритмы способны аппроксимировать произвольную многофакторную зависимость с любой точностью при соответствующей регуляризации процедуры настройки параметров аппроксимационного уравнения. В случае успешного обучения такая сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также на основе неполных или частично искаженных данных. Вследствие этого нейронные сети можно рассматривать не только как инструмент аппроксимации, но и как способ прогнозирования физических свойств реальных объектов на основе экспериментальных данных.

Задачей предложенного технического решения является устранение лишних временных и материальных затрат посредством создания способа определения концентрации компонент в наноструктурном покрытии из гранулированного композита «металл-керамика» и получение собственно самого наноструктурного покрытия из гранулированного композита «металл-керамика», применение которого позволит обеспечить повышенную износостойкость и высокую стабильность параметров с одновременным снижением себестоимости.

Решение указанной задачи достигается тем, что в предложенном способе определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз, согласно изобретению, сначала определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытия с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз, затем на основании полученных данных создают искусственную нейронную сеть, проводят ее обучение, после чего проводят тестирование полученной нейросетевой модели путем последовательного исключения из статистической выборки, которая использовалась для ее обучения, факторов нейросетевой модели в виде экспериментально измеренных величин, включающих микротвердость металлического покрытия (Нм), микротвердость керамического покрытия (Нк) и концентрацию металлической фазы в композите (См), с последующим определением при помощи полученной нейросетовой модели ее выходного параметра в виде значения микротвердости нанокомпозитного покрытия (Н), и сравнения полученного теоретического значения с исходными экспериментальными данными, затем вводят в упомянутую искусственную нейронную сеть химический состав металлической и керамической фаз, их процентное соотношение в получаемом покрытии, и, при помощи искусственной нейронной сети, определяют значения микротвердости получаемого нанокомпозитного покрытия металл-керамика по соотношению металлической и керамической фаз.

В варианте применения после сравнения полученного теоретического значения микротвердости нанокомпозитного покрытия (Н) с исходными экспериментальными данными проводят корректировку полученной нейросетевой модели.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 показаны концентрационные зависимости параметра, характеризующего механические свойства композитов CoFeZr-Al2O3, с указанием точек, полученных экспериментальными и аналитическими исследованиями, на фиг. 2 - зависимости для композитов Fe-Al2O3, на фиг. 3 - зависимости для композитов Fe-SiO2, на фиг. 4 - зависимости для композитов Co-CaF.

На всех фигурах показана концентрационная зависимость микротвердости композитов, измеренная методом Кнупа (символы) и полученная с помощью нейросетевой модели (линия).

Экспериментальные данные представляли собой результат исследования микротвердости нанокомпозитных покрытий металл-керамика, отличающихся друг от друга как элементным составом, так и соотношением фаз. В качестве факторов модели приняты экспериментально измеренные величины: микротвердость чистого металлического покрытия (Нм), микротвердость чистого керамического покрытия (Нк) и концентрация металлической фазы в композите (См), при этом в качестве выходного параметра модели используется значение микротвердости композитного покрытя (Н).

Все данные получены при исследовании нанокомпозитов, которые, в свою очередь, были получены по единой технологии, в одинаковых условиях на одном и том же оборудовании. Покрытия представляли собой тонкие пленки толщиной 5-7 мкм, нанесенные на поверхность полированных пластин СТ-50. Осаждение покрытий производилось с помощью метода ионно-лучевого распыления составных мишеней в атмосфере аргона и последующего осаждения выбитых атомов на поверхность подложки. Образование композитной структуры в напыляемых покрытиях происходило вследствие процессов самоорганизации. Наличие композитной структуры у исследованных покрытий непосредственно подтверждалось данными просвечивающей электронной микроскопии.

Для структурных исследований композиты наносились на монокристаллические подложки из NaCl с последующим отделением, а длительность процесса осаждения составляла несколько минут. Микротвердость композитных покрытий исследовалась методом индентирования алмазной пирамидкой. Поскольку толщина покрытий находилась в интервале 5-7 мкм, для измерений использовалась алмазная пирамидка Кнупа. Все измерения микротвердости проводились при одинаковой нагрузке на индентор, составлявшей 0.49 Н.

Проведенные экспериментальные и аналитические исследования на натурных образцах подтвердили достаточно хорошую сходимость экспериментальных данных с теоретическими данными, полученными при использовании заложенной математической модели, что показывает работоспособность предложенного способа в заданном интервале.

Использование предложенного технического решения позволит построить регрессионные зависимости, открытые для новых данных, то есть созданные модели могут пополняться и уточняться за счет введения новых факторов, что усложняет их структуру, но при этом повышает их адекватность.


Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз
Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз
Источник поступления информации: Роспатент

Показаны записи 701-710 из 738.
03.09.2019
№219.017.c67f

Смесительная головка щелевого парогазогенератора

Использование: для смесеобразования компонент топлива. Сущность изобретения заключается в том, что смесительная головка щелевого парогазогенератора содержит корпус с установленными в нем смесительными элементами для подачи компонентов топлива и парообразующей жидкости, характеризующаяся тем,...
Тип: Изобретение
Номер охранного документа: 0002698952
Дата охранного документа: 02.09.2019
03.09.2019
№219.017.c692

Смесительная головка щелевого парогазогенератора

Использование: для смесеобразования компонентов топлива. Сущность изобретения заключается в том, что смесительная головка щелевого парогазогенератора содержит корпус с установленными в нем смесительными элементами для подачи компонентов топлива и парообразующей жидкости, при этом корпус...
Тип: Изобретение
Номер охранного документа: 0002698951
Дата охранного документа: 02.09.2019
03.09.2019
№219.017.c69a

Смесительная головка щелевого парогазогенератора

Использование: для смесеобразования компонент топлива. Сущность изобретения заключается в том, что смесительная головка щелевого парогазогенератора содержит корпус с установленными в нем смесительными элементами для подачи компонентов топлива и парообразующей жидкости, характеризующаяся тем,...
Тип: Изобретение
Номер охранного документа: 0002698948
Дата охранного документа: 02.09.2019
03.09.2019
№219.017.c6a8

Смесительная головка щелевого парогазогенератора

Использование: для смесеобразования компонентов топлива. Сущность изобретения заключается в том, что смесительная головка щелевого парогазогенератора содержит корпус с установленными в нем смесительными элементами для подачи компонентов топлива и парообразующей жидкости, характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002698950
Дата охранного документа: 02.09.2019
03.09.2019
№219.017.c6ad

Смесительная головка щелевого парогазогенератора

Использование: для смесеобразования компонентов топлива. Сущность изобретения заключается в том, что смесительная головка щелевого парогазогенератора содержит корпус с установленными в нем смесительными элементами для подачи компонентов топлива и парообразующей жидкости, при этом корпус...
Тип: Изобретение
Номер охранного документа: 0002698949
Дата охранного документа: 02.09.2019
11.09.2019
№219.017.c9d0

Теплообменный аппарат

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Корпус теплообменного аппарата выполнен состоящим из входной, центральной и выходной частей. Центральная часть выполнена в виде полого цилиндра с двумя днищами, а входная и выходная...
Тип: Изобретение
Номер охранного документа: 0002699768
Дата охранного документа: 10.09.2019
11.09.2019
№219.017.c9d1

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного компонентов, пояса подачи горячего и холодного компонентов, соединенные с...
Тип: Изобретение
Номер охранного документа: 0002699770
Дата охранного документа: 10.09.2019
11.09.2019
№219.017.c9e2

Теплообменник

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус с входными и выходными патрубками ввода и вывода горячего и холодного компонентов, пояса подачи горячего и холодного компонентов, соединенные с...
Тип: Изобретение
Номер охранного документа: 0002699769
Дата охранного документа: 10.09.2019
12.09.2019
№219.017.c9ea

Парогенератор

Использование: для производства пара. Сущность изобретения заключается в том, что парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива, пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов топлива при...
Тип: Изобретение
Номер охранного документа: 0002699895
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.c9f2

Парогенератор

Использование: для производства пара. Сущность изобретения заключается в том, что парогенератор содержит корпус с камерой сгорания, смесительную головку с полостями подвода компонентов топлива, пояса подачи компонентов топлива, соединенные с соответствующими полостями компонентов топлива при...
Тип: Изобретение
Номер охранного документа: 0002699896
Дата охранного документа: 11.09.2019
Показаны записи 701-710 из 817.
10.05.2018
№218.016.38cf

Способ управления запорно-регулирующей арматурой куста скважин и устройство для его реализации

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для автоматического управления технологическими процессами. При реализации способа осуществляют открытие и закрытие запорно-регулирующей арматуры куста скважин путем независимой подачи рабочего тела или...
Тип: Изобретение
Номер охранного документа: 0002646901
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3e14

Способ подачи рабочего тела в мгд-генератор

Изобретение относится к электротехнике, а именно к магнитной гидродинамике, и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике. Технический результат состоит в повышении кпд и упрощении...
Тип: Изобретение
Номер охранного документа: 0002648252
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.3f2e

Предохранительно-взводящий механизм

Изобретение относится к взрывной технике и может быть использовано во взрывателях снарядов. Технический результат - повышение надежности функционирования устройства при боевом применении, безопасности в служебном обращении и уменьшение габаритно-весовых характеристик. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002648742
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4310

Танковый кассетный снаряд "варкоб" с осколочными боевыми элементами

Изобретение относится к боеприпасам, а именно: к кассетным снарядам с осколочными боевыми элементами. Технический результат - повышение эффективности действия снаряда за счет выполнения осевой штанги-толкателя из осколочных боевых элементов. Снаряд содержит корпус с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002649685
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4314

Танковый кассетный снаряд "ваварт"

Изобретение относится к боеприпасам и, в частности, к кассетным снарядам с осколочными боевыми элементами. Технический результат – повышение надежности работы кассетных снарядов за счет оптимального использования их внутренней полости. Снаряд содержит траекторный взрыватель с...
Тип: Изобретение
Номер охранного документа: 0002649694
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4319

Надкалиберная пучковая граната "вартава" к ручному гранатомету

Изобретение относится к боеприпасам, в частности к надкалиберным пучковым гранатам к ручному гранатомету. Технический результат - увеличение боевой эффективности гранаты. Устройство содержит калиберную часть с метательным зарядом и средством воспламенения, надкалиберную пучковую боевую часть с...
Тип: Изобретение
Номер охранного документа: 0002649691
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4343

Пучковая граната "вакоба" с зонтичным устройством раскрытия боевой части к ручному гранатомету

Изобретение относится к боеприпасам, а именно к противопехотным пучковым гранатам ручных гранатометов. Технический результат – повышение эффективности действия гранаты. Граната содержит боевую часть, состоящую из осевого стержня и нескольких продольных метательных блоков. Эти блоки шарнирно...
Тип: Изобретение
Номер охранного документа: 0002649689
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4344

Надкалиберная пучковая граната "вартава" к ручному гранатомету

Изобретение относится к боеприпасам, и в частности к надкалиберным пучковым гранатам, к ручному гранатомету. Технический результат – повышение боевой эффективности гранаты с улучшением ее массово-габаритных характеристик. Устройство содержит калиберную часть с метательным зарядом и средством...
Тип: Изобретение
Номер охранного документа: 0002649693
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.437b

Пучковая граната "вакоба" с зонтичным устройством раскрытия боевой части к ручному гранатомету

Изобретение относится к боеприпасам, а именно: к противопехотным пучковым гранатам ручных гранатометов. Технический результат – повышение эффективности поражающего действия гранаты. Пучковая граната содержит боевую часть, состоящую из осевого стержня и нескольких продольных метательных блоков....
Тип: Изобретение
Номер охранного документа: 0002649687
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.438c

Танковый кассетный снаряд "варкоб" с осколочными боевыми элементами

Изобретение относится к боеприпасам, а именно к кассетным снарядам с осколочными боевыми элементами. Технический результат - повышение эффективности действия снаряда за счет выполнения осевой штанги-толкателя из осколочных боевых элементов. Снаряд содержит корпус с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002649686
Дата охранного документа: 04.04.2018
+ добавить свой РИД