×
25.08.2017
217.015.a3c4

Результат интеллектуальной деятельности: МИШЕНЬ ИСТОЧНИКА НЕЙТРОНОВ

Вид РИД

Изобретение

№ охранного документа
0002607463
Дата охранного документа
10.01.2017
Аннотация: Изобретение относится к источникам нейтронов. Мишень источника нейтронов содержит мембрану (1), генерирующую нейтроны при облучении ускоренными заряженными частицами, и корпус мишени (2). При этом толщину мембраны (1) выбирают по соотношению с учетом теплопроводности мембраны, допустимого перепада температуры в мембране и тепловыделения в ее единице объема. Угол наклона мембраны (1) по отношению к пучку ускоренных заряженных частиц выбирают с учетом соотношения с учетом толщины мембраны (1) и длины торможения ускоренных заряженных частиц в ней. В частных случаях исполнения мишени, во-первых, мембрана (1) выполнена в форме одной или нескольких пластин, конусов, пирамид или призм, во-вторых, полости мишени и ионопровода (5) разделены между собой перегородкой (3), а мембрана (1) и корпус мишени (2) выполнены перфорированными. Техническим результатом является обеспечение работоспособности мишени при относительно высоких энергиях ускоренных заряженных частиц. 2 з.п. ф-лы, 6 ил.

Изобретение относится к источникам нейтронов и может быть использовано в ускорительно-управляемых системах, в радиационном материаловедении, лучевой терапии и производстве изотопной продукции.

Известны мишени, содержащие вещества, генерирующие нейтроны при облучении их ускоренными заряженными частицами, например протонами. Эти вещества могут использоваться как в твердом состоянии, так и в жидком. Жидкометаллическая мишень [Патент РФ №2284676, Н05Н 6/00] содержит патрубки подвода и отвода жидкого металла, например эвтектики свинец-висмут, патрубок подвода протонов от ускорителя и рабочую камеру, выполненную в виде подъемного и опускного каналов, наклоненных под углом α от 95° до 110° к продольной оси патрубка подвода протонов. В этой мишени веществом, генерирующим нейтроны, является эвтектический сплав свинец-висмут.

Недостатком жидкометаллической мишени является то, что она не может использоваться без циркуляционного контура, содержащего насос для прокачки жидкого металла и оборудование для очистки и поддержания допустимой концентрации примесей в жидком металле.

Наиболее близким аналогом предлагаемой мишени является мишенный узел [патент РФ №2243610, G21K 5/08, Н05Н 6/00], содержащий механизм смены мишеней в виде поворотного рычага, который посредством закрепленного в его центре вала, герметично введенного в корпус, перемещает две подвижные мембраны в рабочую позицию или в позицию смены кассеты с мишенью. В этой мишени вещество, генерирующее нейтроны, сформировано в виде тонкой плоской мембраны.

Основным недостатком мишенного узла является то, что тонкая мембрана обеспечивает относительно малую длину торможения протонов и поэтому она не может быть эффективно использована при энергии протонов, измеряемой десятками МэВ.

Задача изобретения состоит в устранении этого недостатка, а именно в обеспечении относительно большой длины пробега ускоренных заряженных частиц, например протонов, при малой толщине мембраны.

Для исключения указанного недостатка в мишени источника нейтронов, содержащей мембрану, генерирующую нейтроны, при облучении ускоренными заряженными частицами, и корпус предлагается:

- толщину мембраны выбирать согласно соотношению с учетом теплопроводности мембраны, допустимого перепада температуры в мембране и тепловыделения в единице объема;

- мембрану наклонить по отношению к пучку ускоренных заряженных частиц под углом, выбираемым из соотношения с учетом толщина мембраны и длины торможения ускоренных заряженных частиц в ней.

В частных случаях выполнения мишени источника нейтронов предлагается:

- использовать мембрану, выполненную в форме одной или нескольких пластин, конусов, пирамид или призм;

- полости мишени и ионопровода разделить между собой перегородкой, а мембрану и корпус мишени выполнить перфорированными.

Сущность изобретения поясняется на фиг. 1-6. На фиг. 1 показан фрагмент мембраны, на фиг. 2 - продольный разрез мишени, на фиг. 3 - поперечный разрез мишени, выполненной в форме конуса, на фиг. 4 - поперечный разрез мишени, выполненной в форме пирамиды, на фиг. 5 - поперечный разрез мишени, выполненной в форме призмы, на фиг. 6 - продольный разрез мембраны, выполненной в форме трех конусов, вставленных друг в друга.

На фиг. 1 приняты обозначения: Ρ - направление пучка ускоренных заряженных частиц; α - угол между направлением пучка ускоренных заряженных частиц и мембраной, генерирующей нейтроны; L - длина пробега ускоренных заряженных частиц в мембране; q - удельный тепловой поток, отводимый с единицы площади поверхности мембраны.

На фиг. 2-6 приняты следующие позиционные обозначения: 1 - мембрана, генерирующая нейтроны; 2 - корпус мишени; 3 - перегородка, отделяющая полость мишени от вакуумной полости ионопровода ускорителя; 4 - перфорация в мембране и в корпусе мишени; 5 - ионопровод ускорителя.

Сущность изобретения состоит в следующем.

Предлагаемая мишень источника нейтронов состоит из мембраны 1, генерирующей нейтроны, и корпуса мишени 2.

Толщина мембраны 1 соответствует соотношению

где δ - толщина мембраны, м; λ - теплопроводность мембраны, Вт/(м⋅К); Δt - допустимый перепад температуры в мембране, К; qv - тепловыделение в единице объема мембраны, Вт/м3.

Выбор толщины мембраны 1 по соотношению (1) исключает ее перегрев.

Угол наклона мембраны 1 по отношению к пучку ускоренных заряженных частиц соответствует соотношению

где α - угол наклона, град; δ - толщина мембраны, м; L - длина торможения ускоренных заряженных частиц в мембране, м.

Выбор угла наклона мембраны 1 по соотношению (2) обеспечивает необходимую длину торможения ускоренных заряженных частиц.

Частные случаи исполнения мишени

В первом случае мембрана 1 выполнена в форме одной или нескольких пластин, конусов, пирамид или призм, вставленных в корпус мишени 2.

Изменение формы мембраны 1 позволяет при одинаковой массе мембраны 1 варьировать площадь поверхности теплоотвода.

Во втором случае полости мишени и ионопровода разделены между собой перегородкой, а мембрана и корпус мишени выполнены перфорированными.

Сообщение полости мишени с окружающей ее охлаждающей средой позволяет минимизировать перепады температур на мишени.

Мембрана 1 изготовлена, например, из металлического урана или вольфрама толщиной 1-2 мм.

Корпус мишени 2 имеет форму, соответствующую форме мембраны 1. Форма и размеры открытого торца корпуса мишени 2 соответствуют поперечному сечению ионопровода ускорителя 5. Корпус мишени 2 изготовлен из нержавеющей стали, марка которой выбирается в соответствии с условиями применения мишени.

Предлагаемая мишень для генерации нейтронов работает следующим образом.

При облучении мембраны 1 потоком ускоренных заряженных частиц (например, протонов Р), падающих под углом α к ее поверхности, ускоренные заряженные частицы проходят в мембране 1 путь L=δ/sinα, где δ - толщина мембраны 1. Из фиг. 1 видно, что длина пробега ускоренных заряженных частиц L много больше толщины слоя 8. Таким образом, становится возможным обеспечить требуемую длину пробега в достаточно тонкой мембране. Это позволяет снизить перепад температуры в мембране 1 до приемлемой величины.

При использовании мишени в ускорительно-управляемых подкритических системах мишень 1 вставляют либо в нишу, выполненную в корпусе реактора, либо непосредственно в топливную смесь, например расплавленную соль. Таким образом, нейтроны, генерируемые в мембране 1, вводятся в рабочий объем реактора. В случае размещения мишени непосредственно в топливной смеси тепло, выделяющееся в мембране 1, передается через стенку корпуса мишени 2 в топливную смесь. В случае размещения мишени в специально выделенной нише, тепло может сниматься каким-либо теплоносителем.

Технический результат - обеспечение работоспособности мишени при относительно высоких энергиях ускоренных заряженных частиц.

Пример конкретного исполнения устройства

На фиг. 5 показано устройство мишени - источника нейтронов, предназначенное для работы в составе ускорительно-управляемой системы с жидкосолевым подкритическим бланкетом, состоящим из расплава фторидов щелочных металлов, в котором растворен тетрафторид урана. Мишень размещена непосредственно в расплаве фторидов, имеющем среднюю температуру 700°С.

Мишень рассчитана на работу с источником протонов с энергией 72 МэВ при токе пучка 1 мА. Таким образом, мощность пучка протонов составляет 72 кВт. Кроме того, за счет реакции деления в мембране дополнительно выделяется 5-7 кВт тепла. Поэтому мишень рассчитана на тепловыделение 80 кВт. В качестве вещества, генерирующего нейтроны, использован металлический уран. Длина торможения протонов в этом материале составляет 6-7 мм.

Мембрана 1 выполнена в виде уранового конуса с диаметром основания, равным диаметру пучка протонов 140 мм. Назначен допустимый перепад температуры в мембране 1 Δt=30°С. При температуре 750°С теплопроводность урана λ=39,3 Вт/м⋅К. Из нейтронно-физических расчетов получено удельное тепловыделение в мембране 1 qv=303 Вт/см3. В соответствии с соотношением (1) δ≤(λ⋅Δt/qv)1/2=(39,3⋅30/303⋅10-3)1/2=2,1⋅10-3 м. Выбираем δ=2 мм.

Из соотношения (2) находим угол наклона мембраны по отношению к потоку протонов α≤arcsin(δ/L)=arcsin(2/7)=15,9°. Выбираем угол α=15°. Этому углу при внутреннем диаметре основания конуса 2, равном 140 мм, соответствует внутренняя высота конуса 260 мм. При толщине мембраны 1-2 мм наружный диаметр основания конуса будет 144 мм, а высота конуса 267 мм. Округляем это значение высоты до 300 мм и получаем следующие размеры мембраны 1: наружный диаметр основания уранового конуса 144 мм, высота конуса 300 мм, толщина урановой мембраны 1 δ=2 мм, угол наклона мембраны 1 по отношению к потоку протонов α=13,5°, длина пробега протонов в мембране L=8,6 мм.

Мембрана 1 помещена в стальной корпус мишени 2 с толщиной стенки 1 мм. С учетом перепада температуры в стенке корпуса мишени максимальная температура урана будет около 800°С.

Положительный эффект от использования предлагаемой мишени источника нейтронов состоит в том, что обеспечена необходимая длина пробега ускоренных заряженных частиц в мембране 1 при перепаде температуры в ней приемлемой величины.

При традиционном исполнении мишени с диаметром мембраны 1, равным 140 мм, и толщиной мембраны 6 мм объемное тепловыделение составило бы 866 Вт/см3, перепад температуры в уране оказался бы 770°С, а его максимальная температура - около 1500°С, что существенно превышает температуру плавления урана 1132°С.


МИШЕНЬ ИСТОЧНИКА НЕЙТРОНОВ
МИШЕНЬ ИСТОЧНИКА НЕЙТРОНОВ
МИШЕНЬ ИСТОЧНИКА НЕЙТРОНОВ
МИШЕНЬ ИСТОЧНИКА НЕЙТРОНОВ
Источник поступления информации: Роспатент

Показаны записи 471-480 из 554.
18.05.2019
№219.017.573a

Устройство для получения высокотемпературной плазмы на основе многопроволочного лайнера, способ сборки устройства, приспособление для его осуществления, способ разборки устройства и приспособление для его осуществления

Группа изобретений, относящихся к физике высоких плотностей энергии и термоядерного синтеза, может использоваться при получении мощных потоков мягкого рентгеновского излучения (МРИ), необходимого для решения ряда практических задач, например для исследования процессов генерации МРИ при...
Тип: Изобретение
Номер охранного документа: 0002388079
Дата охранного документа: 27.04.2010
18.05.2019
№219.017.573c

Устройство для получения высокотемпературной плазмы на основе многопроволочного лайнера, способ сборки устройства и приспособление для его осуществления

Группа изобретений, относящихся к физике высоких плотностей энергии и термоядерного синтеза, может использоваться при получении мощных потоков мягкого рентгеновского излучения (МРИ), необходимого для решения ряда практических задач, например, для исследования процессов генерации МРИ при...
Тип: Изобретение
Номер охранного документа: 0002388193
Дата охранного документа: 27.04.2010
18.05.2019
№219.017.573d

Опора

Изобретение относится к области машиностроения, а именно к устройствам для установки блоков линейного ускорителя на рельсовый путь, с возможностью последующего регулирования положения блоков с целью юстировки тракта транспортировки пучка ионизирующего излучения ускорителя. Опора содержит...
Тип: Изобретение
Номер охранного документа: 0002385423
Дата охранного документа: 27.03.2010
24.05.2019
№219.017.5e60

Способ послойного прессования деталей из лвсм различной плотности

Изобретение относится к способам послойного холодного прессования многослойной детали из литиевых водородсодержащих порошковых материалов в стальной пресс-форме. Способ включает приготовление навесок, подготовку пресс-формы путем ее сборки из формообразующих элементов с нанесением смазки,...
Тип: Изобретение
Номер охранного документа: 0002688492
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6582

Устройство коммутации передающей линии

Устройство коммутации передающей линии, преимущественно на передающую линию с тем же волновым сопротивлением, включает в себя корпус с изолированными внутри него электродами разрядника, управляющий электрод и общий проводник. Общий проводник линий выполнен в виде отдельных проводников, каждый...
Тип: Изобретение
Номер охранного документа: 0002390924
Дата охранного документа: 27.05.2010
29.05.2019
№219.017.65ac

Клистронный генератор

Изобретение относится к технике СВЧ, может быть использовано при разработке мощных источников сверхвысокочастотного излучения для целей радиолокации, навигации и техники ускорителей элементарных частиц. Клистронный генератор содержит систему формирования магнитного поля, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002396632
Дата охранного документа: 10.08.2010
29.05.2019
№219.017.65c7

Сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком

Область техники - генерирование электромагнитных волн на основе колебаний виртуального катода (ВК). Может быть использовано при создании генераторов сверхвысокочастотного (СВЧ) излучения. Сущность изобретения: сверхвысокочастотный генератор на основе виртуального катода с радиальным пучком...
Тип: Изобретение
Номер охранного документа: 0002395132
Дата охранного документа: 20.07.2010
29.05.2019
№219.017.664c

Пиридиниевый ионит для сорбции урана из растворов и пульп

Настоящее изобретение относится к сорбционной гидрометаллургии урана. Описан пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в...
Тип: Изобретение
Номер охранного документа: 0002385885
Дата охранного документа: 10.04.2010
08.06.2019
№219.017.7583

Защитное устройство

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и области применения, а также повышение надежности работы. Защитное устройство содержит нагрузку, первый полевой транзистор, сток которого соединен с первым входом питания, затвор через...
Тип: Изобретение
Номер охранного документа: 0002690838
Дата охранного документа: 06.06.2019
08.06.2019
№219.017.7596

Понижающий конденсаторный преобразователь напряжения

Изобретение относится к электротехнике, может быть использовано для преобразования постоянного напряжения на входе в постоянное напряжение на выходе с понижением напряжения в целое число раз. Понижающий конденсаторный преобразователь напряжения содержит два ключевых элемента (1) и (2), два...
Тип: Изобретение
Номер охранного документа: 0002690839
Дата охранного документа: 06.06.2019
Показаны записи 411-414 из 414.
14.05.2019
№219.017.51c7

Активная зона ядерного реактора

Изобретение относится к области ядерной энергетики и может быть использовано в реакторах с прямым преобразованием энергии в электрическую. Активная зона ядерного реактора включает по меньшей мере один модуль, а также твердый и жидкий замедлители нейтронов. Модуль содержит корпус, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002687288
Дата охранного документа: 13.05.2019
20.02.2020
№220.018.0481

Кондукционный насос-расходомер

Изобретение относится к электротехнике. Кондукционный насос-расходомер содержит источник магнитного поля, рабочий канал (4) для протока жидкого металла, частично помещенный в магнитное поле и снабженный токоподводящими шинами (5) и электродами для измерения напряжения (6), и кожух (1) из...
Тип: Изобретение
Номер охранного документа: 0002714504
Дата охранного документа: 18.02.2020
19.03.2020
№220.018.0dd2

Устройство для производства радионуклидов

Изобретение относится к устройству для производства радионуклидов. Устройство содержит ускоритель электронов (8), конвертер электронов, мишенный узел (5), включающий капсулу с облучаемым веществом, и систему охлаждения, выполненную в виде циркуляционного контура, содержащего насос-расходомер...
Тип: Изобретение
Номер охранного документа: 0002716818
Дата охранного документа: 17.03.2020
19.03.2020
№220.018.0de6

Мишенный узел ускорителя электронов

Изобретение относится к мишенному узлу ускорителя электронов и может использоваться для производства различных радиоизотопов и радиофармпрепаратов. Устройство содержит конвертер электронов (2) и капсулу (1) с облучаемым веществом (5). Конвертер электронов (2) и капсула (1) с облучаемым...
Тип: Изобретение
Номер охранного документа: 0002716824
Дата охранного документа: 17.03.2020
+ добавить свой РИД