Вид РИД
Изобретение
Изобретение относится к магнитному курсоуказанию и навигации и может быть использовано на летательных аппаратах для определения коэффициентов девиации, описывающих изменения напряженности результирующего магнитного поля земли (МПЗ), вносимые летательным аппаратом (ЛА) непосредственно в полете, и компенсации этих изменений при вычислении магнитного курса ψм.
В связи с тем, что характер груза, подвесного или несъемного, включаемого под ток оборудования ЛА, а значит и коэффициенты девиации, могут меняться на каждом вылете, может возникать необходимость компенсации девиации магнитометрических датчиков на каждом вылете.
Известны способ определения и компенсации девиации магнитометрических датчиков и устройство для его осуществления, представленные в патенте RU 2550774, МПК G01C 21/08, G01C 25/00, опубл. 10.05.2015 г. Согласно известному способу определение и компенсацию девиации магнитометрических датчиков ЛА осуществляют путем многократного измерения проекций составляющих МПЗ на строительные оси ЛА при выполнении маневра ЛА в полете, определения модулей результирующих МПЗ, формирования функций чувствительности с поочередным добавлением малых приращений к каждому коэффициенту, и на их основе определения приращений коэффициентов магнитной девиации ортогональных магнитных датчиков Δр Δr Δq Δа Δе Δb итеративным методом. Задача сводится к определению коэффициентов Пуассона методом параметрической идентификации по критерию минимума разности между текущим, вычисленным значением результирующего магнитного поля земли и его постоянным, определенным как среднее за весь маневр, значением. При правильном решении эти приращения по мере выполнения итераций стремятся к нулю. Итерационный процесс полагаем успешным, если на последней итерации выполняется условие:
При выполнении итерации автоматически списываются девиации магнитных датчиков и определяется магнитный курс.
В приведенном изобретении устройство для определения и компенсации девиации магнитометрических датчиков содержит трехкомпонентный магнитометрический датчик, вычислитель магнитного курса, блок оценки модуля МПЗ, блок формирования функций чувствительности и блок определения вектора приращений коэффициентов магнитной девиации.
Известные способ определения и компенсации девиации магнитометрических датчиков и устройство для его осуществления, несмотря на эффективное определение коэффициентов полукруговой девиации, не позволяют определить все коэффициенты девиации, в частности круговую девиацию.
Цель изобретения - обеспечение возможности определения и компенсации всех составляющих коэффициентов девиации магнитометрических датчиков в полете при каждом вылете, используя специальные маневры после взлета и спутниковую навигационную систему (СНС), и сокращение тем самым трудозатрат и сроков подготовки ЛА к вылету.
Указанная цель достигается за счет того, что, согласно заявляемому способу определения и компенсации девиации магнитометрических датчиков, основанному на многократном определении магнитного курса ЛА при выполнении маневра в полете, дополнительно используют измерения СНС по скорости в восточном и северном направлениях, определяют путевой угол ЛА и осуществляют довыставку курса бесплатформенной инерциальной системы (БИНС) по путевому углу в процессе руления и взлета до момента отрыва колес от взлетно-посадочной полосы (ВПП), после набора высоты Н≥1000 м выполняют фигуру пилотажа «восьмерка» в горизонтальной плоскости с постоянными абсолютными значениями углов крена, при этом в процессе выполнения фигуры определяют разности магнитного курса и истинного курса от БИНС, определяют и запоминают средние значения разностей, определенных на первой и второй ветках фигуры «восьмерка» на одних и тех же магнитных курсах, далее осредняют запомненные значения разностей в пределах одного градуса для всего рабочего диапазона, соответствующего 360 градусам, полученные средние значения, являющиеся девиацией магнитного компаса, используют для коррекции магнитного курса.
Заявляемый способ может быть реализован с помощью устройства для определения и компенсации девиации магнитометрических датчиков, содержащего последовательно соединенные трехкомпонентный магнитометрический датчик и блок определения магнитного курса, которое в отличие от прототипа дополнительно содержит сумматор, выход которого является выходом устройства, последовательно соединенные бесплатформенную инерциальную навигационную систему, вычитающее устройство и блок коррекции, причем выход блока определения магнитного курса подключен ко второму входу вычитающего устройства и к первому входу сумматора, второй вход которого соединен с выходом блока коррекции, последовательно соединенные спутниковую навигационную систему, блок определения путевого угла и логический блок коммутации, выход которого подключен к выходу БИНС, второй и третий выходы которой подключены ко вторым входам блока определения магнитного курса и логического блока коммутации соответственно, и пульт управления, выход которого подключен к третьим входам вычитающего устройства и логического блока коммутации.
Сущность изобретения поясняется чертежом, на котором представлена структурная схема устройства для определения и компенсации девиации магнитометрических датчиков.
Устройство содержит трехкомпонентный магнитометрический датчик 1, блок 2 определения магнитного курса, сумматор 3, БИНС 4, вычитающее устройство 5, блок 6 коррекции, СНС 7, блок 8 определения путевого угла, логический блок 9 коммутации и пульт 10 управления.
Трехкомпонентный магнитометрический датчик 1 измеряет и выдает значения проекций напряженности магнитного поля Земли в связанной с ЛА системе координат в блок 2 определения магнитного курса.
В блоке 2 определения магнитного курса определяется текущий магнитный курс с учетом крена и тангажа ЛА, согласно выражению (2).
БИНС 4 выдает значения скорости вдоль продольной оси ЛА Vx в логический блок 9 коммутации, значение гироскопического курса в вычитающее устройство 5 и значения крена и тангажа в блок 2 определения магнитного курса после начальной выставки по горизонту и довыставки по курсу в процессе разбега.
В вычитающем устройстве 5 определяется разность (3) между истинным (гироскопическим курсом) ψи и магнитным курсом ψМ для каждого значения курса от 0 до 360 градусов в процессе выполнения маневра, по команде от ПУ 10.
В блоке 6 определения среднего значения девиации и коррекции определяется среднее значение поправки магнитного курса по запомненным значениям разностей при соответствующих значениях углов курса первой и второй ветки маневра «восьмерка».
СНС 7 выдает скорости движения ЛА в направлении северного меридиана VN и в направлении восточной параллели VE в блок 8 определения путевого угла.
В блоке 8 определения путевого угла определяется путевой угол, согласно выражению (1).
Логический блок 9 коммутации замыкает цепь коррекции гироскопического курса от СНС при достижении пороговой скорости ЛА и размыкает цепь при срабатывании концевого выключателя «обжатие стойки шасси».
От пульта управления 10 поступает команда на довыставку по курсу и выдачу результатов определения разности магнитного курса и курса от БИНС в блок 6 коррекции.
В сумматоре 3 запомненные средние значения поправок из блока 6 используются для компенсации девиации текущего магнитного курса.
Используя СНС, можно определить путевой угол, согласно известному выражению:
где: VE - путевая скорость ЛА от СНС в восточном направлении, VN - путевая скорость ЛА в северном направлении. Необходимо отметить, что путевой угол ΨП и истинный курс ψи – это разные углы и отличаются на величину угла сноса, обусловленного наличием ветра. По этой причине использовать путевой угол в качестве эталона для определения девиации не представляется возможным. В качестве эталона предлагается использовать БИНС, предварительно точно выставленную в горизонте и довыставленную в азимуте при помощи СНС. Учитывая тот факт, что в полете имеется угол сноса, довыставку по курсу предлагается осуществить при рулении и разбеге ЛА в процессе взлета, до момента срабатывания концевого выключателя «обжатие стойки шасси». Пороговое значение разрешения коррекции назначается из условия допустимой погрешности измерения значения путевого угла СНС. А в процессе подготовки ЛА к вылету осуществляется выставка БИНС в горизонте с определением систематических составляющих дрейфов всех трех гироскопов, расположенных по строительным осям ЛА. После взлета и набора высоты включается режим компенсации девиации. Для определения девиации выполняется специальный маневр в виде «восьмерка» в плоскости горизонта с постоянными значениями крена, на правом вираже со знаком плюс, на левом со знаком минус, соответственно. В процессе выполнения маневра определяется магнитный курс по измеренным значениям магнитометрических датчиков ψм
Если ψм<0, то ψм=ψм+2π,
и для каждого значения курса определяется разность магнитного курса ψм и истинного курса ψи,
Запоминаются 360 значений Δψi первой ветки и второй ветки фигуры «восьмерка» для различных углов магнитного курса. Для введения поправки измеренному значению магнитного курса используют среднее значение погрешностей первой и второй ветки фигуры «восьмерка».
Как известно, гироскопические датчики имеют систематические и постоянные дрейфы. Кроме того, искомые параметры в БИНС определяются путем интегрирования выходных сигналов датчиков угловых скоростей. По этой причине с течением времени возникает необходимость их коррекции. При наличии на борту СНС методами статистической рекуррентной фильтрации в некоторых случаях удается оценить предполагаемые погрешности определения углов ориентации ЛА. Однако сигналы спутников СНС подвержены влиянию помех при большой облачности, а маневры ЛА приводят к потере связанных спутников и т.д. Использование магнитного корректора курса остается актуальной задачей. Использование БИНС в качестве эталона в начальном этапе полета возможно, в случае достаточно точной начальной выставки по трем углам крена, тангажа и курса с одновременным определением систематических составляющих дрейфов гироскопов. Для повышения точности выставки по курсу предлагается использовать путевой угол, определяемый по сигналам СНС при рулении и при разбеге ЛА.
Согласно (1) погрешность определения путевого угла определяется выражением:
С учетом того, что погрешность определения скоростей ΔVN и ΔVE в СНС составляет 0.15 м/сек, при скорости разбега 100 км/час ΔΨП=0.3 град. Из этих условий назначают порог разрешения довыставки по курсу при разбеге, в зависимости от типа ЛА. После отрыва шасси от ВПП на ЛА оказывает влияние ветер, следовательно
и довыставку необходимо прекратить. После набора высоты Н>1000 м необходимо выполнить специальный маневр типа «восьмерка» в горизонтальной плоскости с постоянным креном. Противоположные направления крена при выполнении маневра позволяют избежать креновой погрешности путем осреднения погрешностей измерения магнитного курса при одних и тех же значениях курса. Осредненные погрешности магнитного курса записывают в память и используют в качестве поправки к магнитному курсу.
Таким образом, в результате использования предложенных способа и устройства не требуется дополнительных работ на земле для начальной выставки БИНС и для компенсации постоянной девиации, с применением оптических пеленгаторов и теодолитов, в результате сокращается время подготовки ЛА к вылету. Изобретения можно использовать на всех типах ЛА, особенно в легких или средних беспилотных ЛА, для которых выполнить предписанную фигуру после взлета не затруднительно.
