×
25.08.2017
217.015.a306

Результат интеллектуальной деятельности: СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений. Способ включает проведение стандартных газодинамических исследований скважин на стандартных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований (ГДИ) при текущем расходе газа. Осуществляют контроль давления в затрубном пространстве скважины с помощью датчика давления, установленного на скважине и по показаниям которого с заданным шагом квантования, по барометрической формуле автоматизированная система управления технологическими процессами оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа. Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования. Оперативное моделирование потерь давления в стволе скважины определяют из результатов фактических измерений давления на забое скважины, ее характеристик и текущих параметров добываемого флюида. Предложенное изобретение позволяет оперативно контролировать техническое состояние скважин, что повышает эффективность промышленной безопасности при эксплуатации. 2 з.п. ф-лы.

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газовых и газоконденсатных месторождений для контроля технического состояния скважин и оперативного изменения технологического режима их эксплуатации.

Техническое состояние скважин определяется наличием или отсутствием водопритока в ствол скважины, наличием или отсутствием песчано-жидкостной пробки на забое скважины, которая может полностью или частично перекрывать интервалы перфорации, наличием или отсутствием газовых гидратов в стволе скважины, которые могут привести к полной или частичной закупорке ствола, срыву гидратной пробки потоком газа и ее ударно-разрушительному воздействию на устьевую обвязку.

Техническое состояние скважины наиболее достоверно определяется методами промысловой геофизики. Наличие притока жидкости в ствол скважины наиболее уверенно фиксируется на термограмме по положительной аномалии дросселирования. Косвенным образом, методом шумоиндикации. Установить характер жидкости позволяют методы определения плотности и состава заполнителя ствола (барометрия, влагометрия, термоанемометрия, гамма-гамма плотностиметрия) (Газодинамический контроль за эксплуатацией скважин на месторождениях и подземных хранилищах газа промыслово-геофизическими методами. ГГК «Газпром». Методические рекомендации. - М.: Типография ОХО Миннефтепрома СССР, 1991. - 160 с).

Определение наличия водопритока геофизическими методами имеет следующие недостатки. Высокая стоимость исследований. Отсутствие количественной оценки содержания воды в продукции скважины.

Известен способ контроля за процессом обводнения газовых скважин путем проведения газодинамических исследований скважин методом установившихся отборов с применением малогабаритного устройства, состоящего из сепаратора, расходомера и емкости для сбора отсепарированных примесей (А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995, с. 499).

Недостатком данного способа является необходимость проведения химических анализов для определения природы отсепарированной жидкости. Кроме того, значения коэффициентов фильтрационного сопротивления a и b, которые получают в результате обработки газодинамических исследований скважин методом установившихся отборов без анализа динамики этих коэффициентов во времени, не являются информативными с точки зрения поступления в залежь пластовых и подошвенных вод. Также недостатком способа является то, что его реализация возможна только в период положительных температур во избежание замерзания жидкости.

Известен способ контроля формирования песчано-жидкостной пробки на забое скважины путем периодического шаблонирования скважины с отбивкой забоя периодически проводимых геологическими службами предприятий (А.И. Гриценко, З.С. Алиев, О.М. Ермилов, В.В. Ремизов, Г.А. Зотов. Руководство по исследованию скважин. - М.: Наука, 1995, с. 499).

Недостатком данного способа являются значительные временные затраты. Проведение данной операции на сеноманской скважине силами исследовательской бригады занимает порядка 4 часов, в процессе которой скважина простаивает, поэтому периодичность замеров допускается не более 1 раза в год.

Известен способ определения влагосодержания продукции газовых скважин, оборудованных устьевой обвязкой, включающий подачу газа из скважины в рабочую камеру, в которой контролируют давление и разность давлений газа в верхней и нижней частях рабочей камеры и осуществляют измерение относительной влажности газа, после стабилизации давления в рабочей камере поступивший газ изолируют, последовательно закрывая запорно-регулирующие элементы сначала на выпускном коллекторе рабочей камеры, а затем на впускном коллекторе рабочей камеры, после чего измеряют относительную влажность газа в верхней и нижней частях рабочей камеры сорбционно-емкостными элементами, установленными в верхней и нижней горизонтальных плоских стенках рабочей камеры, и если величины относительной влажности в верхней и нижней частях рабочей камеры равны и составляют величину менее 100%, то ее и принимают за величину относительной влажности газа, а если в нижней части камеры величина относительной влажности равна 100%, то включают нагрев камеры и нагревают газ в рабочей камере до тех пор, пока в верхней и нижней частях камеры не будет измерена одинаковая величина относительной влажности газа ниже 100%, а если на основании замеров относительной влажности сорбционно-емкостными элементами в верхней и нижней частях рабочей камеры после нагрева не будет достигнута одинаковая величина относительной влажности газа ниже 100%, то величину влажности газа определяют по плотности газа гидростатическим методом на основании разности давлений газа в верхней и нижней частях рабочей камеры и зафиксированной температуры нагретого газа. (Патент РФ №2354823, опубл. 10.05.2009).

Наиболее близким принятым за прототип является способ контроля за процессом обводнения газовых скважин, включающий проведение стандартных газодинамических исследований скважин методом установившихся отборов, определение коэффициентов фильтрационного сопротивления a и b, анализ динамики коэффициентов фильтрационного сопротивления a и b во времени, построение графиков их изменения во времени, сравнение значений коэффициентов фильтрационного сопротивления a и b с предыдущими, вывод о наличии пластовых вод в призабойной зоне пласта по скачкообразному увеличению значений коэффициентов фильтрационного сопротивления (Патент РФ 2202692, опубл. 20.04.2003).

Недостатками данного способа являются сравнительно большие ошибки при определении даты поступления пластовых и/или подошвенных вод, что обусловлено большими интервалами времени между датами газодинамических исследований скважин методом установившихся отборов.

Общим недостатком всех приведенных выше способов является малая дискретность замеров, не позволяющая оперативно фиксировать изменения технического состояния скважин.

Задачей, на решение которой направлено предлагаемое изобретение, является создание способа оперативного контроля за изменением технического состояния скважин по данным эксплуатации.

Технический результат - повышение эффективности промышленной безопасности эксплуатации газовых и газоконденсатных скважин путем фиксирования с высокой дискретностью изменений технического состояния скважин по данным устьевой телеметрии в процессе их нормальной эксплуатации на технологическом режиме, заданном проектом разработки месторождения и оперативной корректировки технологического режима на основании полученных результатов.

Технический результат достигается тем, что способ оперативного контроля технического состояния газовых и газоконденсатных скважин включает проведение стандартных газодинамических исследований (ГДИ) скважин на стационарных режимах фильтрации с построением зависимости устьевых параметров давления и температуры, и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа, согласно изобретению осуществляют контроль давления в затрубном пространстве скважины с помощью датчика давления, установленного на скважине и по показаниям которого с заданным шагом квантования, по барометрической формуле автоматизированная система управления технологическими процессами (АСУ ТП) или информационно-управляющая система (ИУС) оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам газодинамических исследований при текущем расходе газа.

Если при текущем расходе величина забойного давления постепенно снижается и становится меньше показателя, определяемого зависимостью, построенной по результатам газодинамических исследований с учетом поправки на снижение пластового давления, то автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение оператору о том, что продуктивность скважины снижается по причине формирования песчаной пробки на забое и требуется снизить расход газа.

Если величина потерь давления в стволе скважины, определяемая как разность забойного и устьевого давлений, растет и становится выше показателя при газодинамических исследованиях при текущем расходе газа, автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение о том, что увеличилось количество воды в продукции скважины и требуется проведение геофизических исследований скважины.

Если температура на устье скважины опускается ниже температуры гидратообразования при текущем устьевом давлении, наблюдается рост забойного давления с одновременным снижением устьевого давления и/или расхода газа, автоматизированная система управления технологическими процессами (или ИУС) выдает сообщение об образовании в стволе скважины газовых гидратов и необходимости немедленной подачи на забой ингибитора гидратообразования.

Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования, например по формуле:

,

где Рпл - пластовое давление, а и b - коэффициенты фильтрационного сопротивления, зависящие от несовершенства скважины, геометрии зоны дренирования, параметров пласта, свойства газа, и которые определяют по результатам ГДИ, а оперативные моделирование зависимости величины устьевого давления от расхода газа определяют из результатов фактических измерений давления на забое скважины Рз, ее характеристик и текущих параметров добываемого флюида, например, по формуле:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

Рз - давление на забое скважины, МПа

Ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zср - средний коэффициент сверхсжимаемости газа,

Тср - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа.

Для оперативного определения давления и температуры добываемого флюида на забое скважины с заданным шагом квантования используют глубинные датчики и линии их связи с наземным оборудованием с величиной инерционности измерений, гарантирующей исключение развития необратимых переходных процессов реализации технологии добычи, и спускаемые в скважину в составе компоновки скважинного оборудования.

Между отличительными признаками и достигаемым техническим результатом существует следующая причинно-следственная связь. Для осуществления оперативного моделирования давления на забое скважины и его динамики используются результаты фактических измерений расхода газа, производимых с заданным шагом квантования. Оперативное моделирование зависимости величины устьевого давления от расхода газа осуществляется с использованием результатов фактических измерений давления на забое скважины, ее характеристик и текущих параметров добываемого флюида. Весь этот комплекс позволяет оперативно контролировать техническое состояние скважин, что повышает эффективность промышленной безопасности при эксплуатации.

Предлагаемый способ оперативного контроля технического состояния газовых и газоконденсатных скважин осуществляют следующим образом.

Устья скважин оборудуют датчиками давления и температуры, узлами замера расхода (дебита) газа/газоконденсатной смеси.

Проводят стандартные газодинамические исследования (ГДИ) скважин на стационарных режимах фильтрации с построением зависимости устьевых параметров (давления и температуры) и давления на забое скважины от расхода газа, контроль соответствия величины фиксируемых в процессе эксплуатации устьевых параметров величине параметров, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа.

На скважине устанавливают датчик давления, который контролирует давление в затрубном пространстве скважины и по показаниям которого с заданным шагом квантования по барометрической формуле автоматизированная система управления технологическими процессами (АСУ ТП) оперативно моделирует давление на забое скважины и сравнивает его с величиной забойного давления, определяемой зависимостью, построенной по результатам ГДИ при текущем расходе газа.

Оперативное моделирование давления на забое скважины и его динамики осуществляют, используя результаты фактических измерений расхода газа, производимых с заданным шагом квантования, по формуле:

,

где Рпл - пластовое давление, а и b - коэффициенты фильтрационного сопротивления, зависящие от несовершенства скважины, геометрии зоны дренирования, параметров пласта, свойства газа, и которые определяют по результатам ГДИ.

Если при текущем расходе величина забойного давления постепенно снижается и становится меньше показателя, определяемого зависимостью, построенной по результатам ГДИ с учетом поправки на снижение пластового давления, то АСУ ТП (или ИУС) выдает сообщение оператору о том, что продуктивность скважины снижается по причине формирования песчаной пробки на забое и требуется снизить расход газа.

Оперативное моделирование зависимости величины устьевого давления от расхода газа определяют из результатов фактических измерений давления на забое скважины Рз, ее характеристик и текущих параметров добываемого флюида, например, по формуле:

,

где ,

,

D - внутренний диаметр фонтанных труб, м,

Q - дебит скважины, тыс. м3/сут,

Рз - давление на забое скважины, МПа,

Ру - давление устья фонтанных труб, МПа,

L - расстояние от устья до забоя скважины, м,

Zср - средний коэффициент сверхсжимаемости газа,

Тср - средняя по стволу скважины температура газа, К,

- средняя по стволу скважины плотность газа, кг/м3,

λ - коэффициент сопротивления труб, зависящий от числа Рейнольдса, средней скорости потока и вязкости газа.

Если величина потерь давления в стволе скважины, определяемая как разность забойного и устьевого давлений, растет и становится выше показателя при ГДИ при текущем расходе газа, АСУ ТП (или ИУС) выдает сообщение о том, что увеличилось количество воды в продукции скважины и требуется проведение геофизических исследований скважины.

Для исключения развития необратимых переходных процессов реализации технологии добычи (их бифуркации) АСУ ТП (или ИУС) увеличивает частоту квантования измерений по мере приближения моделируемых и контролируемых параметров к их критическим значениям, выводя соответствующее сообщение оператору, который, исходя из опыта эксплуатации конкретных скважин, может дополнительно увеличить частоту квантования.

Для оперативного определения давления и температуры добываемого флюида на забое скважины с заданным шагом квантования используют глубинные датчики и линии их связи с наземным оборудованием с величиной инерционности измерений, гарантирующей исключение развития необратимых переходных процессов реализации технологии добычи, и спускаемые в скважину в составе компоновки скважинного оборудования.


СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН
СПОСОБ ОПЕРАТИВНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ СКВАЖИН
Источник поступления информации: Роспатент

Показаны записи 81-90 из 90.
27.05.2023
№223.018.712c

Способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод, на установках низкотемпературной сепарации газа в районах крайнего севера

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту на Крайнем Севере. Предложен способ автоматического поддержания плотности нестабильного газового конденсата, подаваемого в магистральный конденсатопровод (МКП), на установках низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002768443
Дата охранного документа: 24.03.2022
27.05.2023
№223.018.7130

Способ автоматического поддержания плотности нестабильного газового конденсата с применением турбодетандерных агрегатов на выходе установок низкотемпературной сепарации газа северных нефтегазоконденсатных месторождений рф

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию плотности нестабильного газового конденсата (НТК) с применением турбодетандерных агрегатов (ТДА) в установках низкотемпературной сепарации газа (далее...
Тип: Изобретение
Номер охранного документа: 0002768837
Дата охранного документа: 24.03.2022
27.05.2023
№223.018.7221

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа на установках комплексной подготовки газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области добычи и подготовки природного газа к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной системы управления технологическим процессами...
Тип: Изобретение
Номер охранного документа: 0002743870
Дата охранного документа: 01.03.2021
27.05.2023
№223.018.7222

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа на установках комплексной подготовки газа, с применением аппаратов воздушного охлаждения, нефтегазоконденсатных месторождений севера рф

Изобретение относится к области добычи и подготовки природного газа к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной системы управления технологическими процессами...
Тип: Изобретение
Номер охранного документа: 0002743869
Дата охранного документа: 01.03.2021
27.05.2023
№223.018.7223

Способ автоматического распределения нагрузки между технологическими линиями низкотемпературной сепарации газа с турбодетандерными агрегатами на установках комплексной подготовки газа севера рф

Изобретение относится к области добычи и подготовки природного газа валанжинских залежей (далее природный газ) к дальнему транспорту на установках комплексной подготовки газа (УКПГ) нефтегазоконденсатных месторождений (НГКМ) Севера РФ. Способ включает контроль средствами автоматизированной...
Тип: Изобретение
Номер охранного документа: 0002743690
Дата охранного документа: 24.02.2021
16.06.2023
№223.018.7cc2

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора – метанола - из нестабильного газового конденсата (НГК) на установках низкотемпературной сепарации газа, расположенных в районах...
Тип: Изобретение
Номер охранного документа: 0002743711
Дата охранного документа: 24.02.2021
16.06.2023
№223.018.7cca

Способ оптимизации процесса отмывки ингибитора из нестабильного газового конденсата на установках низкотемпературной сепарации газа нефтегазоконденсатных месторождений севера рф

Изобретение относится к области подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению отмывкой ингибитора - метанола из нестабильного газового конденсата (НГК) на установках низкотемпературной сепарации (НТС) газа (далее установка),...
Тип: Изобретение
Номер охранного документа: 0002743726
Дата охранного документа: 25.02.2021
17.06.2023
№223.018.7e2d

Способ смазки шкворневого узла ветрогенератора

Изобретение относится к способам технического обслуживания ветрогенераторов и может найти применение в смазке шкворневого узла ветрогенератора Whisper-200 производства компании Southwest Wind Power. Способ смазки шкворневого узла ветрогенератора Whisper-200 включает выполнение с наружной...
Тип: Изобретение
Номер охранного документа: 0002771265
Дата охранного документа: 29.04.2022
17.06.2023
№223.018.7eb4

Способ подачи поверочной газовой смеси детектору углеводородных газов при его калибровке

Изобретение относится к способам проведения калибровок детектора углеводородных газов. Способ подачи поверочной газовой смеси детектору углеводородных газов при его калибровке характеризуется тем, что выполняют сквозное отверстие во фланце рядом с кабельным вводом, в которое вставляют штуцер,...
Тип: Изобретение
Номер охранного документа: 0002775932
Дата охранного документа: 12.07.2022
17.06.2023
№223.018.7edc

Стенд для устранения деформации основания ротора ветрогенератора и способ устранения деформаций основания ротора с помощью данного стенда

Изобретение относится к ветроэнергетике и может быть использовано в ветрогенераторах для устранения биения их роторов вследствие деформации их основания. На корпус ветрогенератора устанавливают кронштейн с закрепленным к нему на специальной площадке с отверстием индикатором часового типа (далее...
Тип: Изобретение
Номер охранного документа: 0002774009
Дата охранного документа: 14.06.2022
Показаны записи 81-90 из 99.
18.12.2019
№219.017.ee88

Способ автоматического управления производительностью установки низкотемпературной сепарации газа в условиях крайнего севера

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к дальнему транспорту, в частности к автоматическому управлению производительностью установок низкотемпературной сепарации газа (далее установка). Предложен способ автоматического управления...
Тип: Изобретение
Номер охранного документа: 0002709044
Дата охранного документа: 13.12.2019
27.12.2019
№219.017.f2e2

Метод нейтронной цементометрии для диагностики заполнения облегченным цементным камнем заколонного пространства нефтегазовых скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля состояния цементного камня за обсадной колонной нефтегазовых скважин и качества цементирования. Технический результат заключается в повышении достоверности результатов исследований скважин нейтронными...
Тип: Изобретение
Номер охранного документа: 0002710225
Дата охранного документа: 25.12.2019
01.02.2020
№220.017.fbf5

Способ автоматического управления процессом осушки газа на установках комплексной подготовки газа в условиях севера

Изобретение относится к области подготовки природного газа к дальнему транспорту, в частности к автоматическому управлению осушкой газа на установках комплексной подготовки газа - УКПГ в условиях Севера РФ. Автоматизированная система управления технологическим процессом - АСУ ТП осушки газа...
Тип: Изобретение
Номер охранного документа: 0002712665
Дата охранного документа: 30.01.2020
08.02.2020
№220.018.005d

Способ повышения отдачи конденсата эксплуатируемым объектом нефтегазоконденсатного месторождения

Изобретение относится к нефтегазовой промышленности и может быть использовано при разработке газоконденсатных месторождений для обеспечения максимального текущего и потенциально возможного конечного коэффициентов конденсатоотдачи благодаря оперативной оптимизации технологического режима...
Тип: Изобретение
Номер охранного документа: 0002713553
Дата охранного документа: 05.02.2020
31.05.2020
№220.018.231d

Способ построения карты изобар для нефтегазоконденсатных месторождений

Изобретение относится к нефтегазовой промышленности и может быть использовано при построении карты изобар для разрабатываемых нефтегазоконденсатных месторождений (НГКМ). Техническим результатом является повышение точности оперативного построения в автоматическом режиме карты изобар...
Тип: Изобретение
Номер охранного документа: 0002722331
Дата охранного документа: 29.05.2020
27.06.2020
№220.018.2b7f

Способ автоматического распределения нагрузки между технологическими линиями осушки газа на установках комплексной подготовки газа, расположенных на севере рф

Изобретение относится к области добычи, сбора и подготовки природного газа и газового конденсата к дальнему транспорту, в частности к ведению процесса осушки газа на установках комплексной подготовки газа (УКПГ) сеноманских залежей нефтегазоконденсатных месторождений (НГКМ). Способ...
Тип: Изобретение
Номер охранного документа: 0002724756
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.4218

Технологическая жидкость для очистки призабойной зоны пласта, ствола скважины, внутренней поверхности насосно-компрессорных труб, внутрискважинных фильтров

Группа изобретений относится к технологическим жидкостям для очистки призабойной зоны пласта, ствола скважины, внутренней поверхности насосно-компрессорных труб, внутрискважинных фильтров. Технический результат - комплексное воздействие, универсальность, срок хранения не менее чем у известных...
Тип: Изобретение
Номер охранного документа: 0002738055
Дата охранного документа: 07.12.2020
20.04.2023
№223.018.4b5b

Способ оценки газонасыщенности галитизированных коллекторов газовых скважин в процессе проведения нейтрон-нейтронного каротажа

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Заявлен способ оценки газонасыщенности галитизированных коллекторов путем регистрации и...
Тип: Изобретение
Номер охранного документа: 0002766063
Дата охранного документа: 07.02.2022
27.05.2023
№223.018.7101

Способ автоматического управления подачей ингибитора для предупреждения гидратообразования или льдообразования в системах добычи, сбора и подготовки газовых и газоконденсатных промыслов

Изобретение относится к области добычи природного газа, в частности к обеспечению автоматического управления дозированной подачей ингибитора гидратообразования или льдообразования. Способ включает дозированную подачу ингибитора по точкам в системе «скважина - система сбора - установка...
Тип: Изобретение
Номер охранного документа: 0002775929
Дата охранного документа: 12.07.2022
27.05.2023
№223.018.7104

Способ автоматического поддержания плотности нестабильного газового конденсата на выходе установок низкотемпературной сепарации газа северных нефтегазоконденсатных месторождений рф

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту на Крайнем Севере, в частности, к автоматическому поддержанию на установке низкотемпературной сепарации газа (далее – установка) плотности нестабильного газового конденсата (НГК), подаваемого в...
Тип: Изобретение
Номер охранного документа: 0002775126
Дата охранного документа: 28.06.2022
+ добавить свой РИД