×
25.08.2017
217.015.a2ba

Результат интеллектуальной деятельности: ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА ДИФФЕРЕНЦИАЛЬНОГО СКАНИРУЮЩЕГО КАЛОРИМЕТРА

Вид РИД

Изобретение

№ охранного документа
0002607265
Дата охранного документа
10.01.2017
Аннотация: Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального сканирующего калориметра содержит цилиндрический корпус, выполненный из металла с высокой температуропроводностью. В корпусе размещена по меньшей мере одна металлическая вставка в виде диска, выполненного из металла с высокой температуропроводностью, в верхней части которого выполнено углубление для размещения образца исследуемого материала. В верхней части корпуса выполнен гермоввод для вакуумирования и подачи жидкости, а нижняя часть корпуса снабжена герметичной крышкой, выполненной с возможностью герметичного размещения внутри корпуса. Техническим результатом является обеспечение повышенной температуропроводности образца в ячейке, уменьшение эффекта запаздывания температуры, обеспечение возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками, а также ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой.

Метод термопорометрии (криопорометрии) основан на калориметрических измерениях фазового перехода твердое тело - жидкость (например, вода-лед) в пористом материале, причем температура замерзания жидкости в порах зависит от размера пор. При уменьшении размера пор снижается температура замерзания жидкости, соответственно поры определенного размера характеризуются собственной температурой замерзания.

В экспериментах по методу термопорометрии пористую среду, заполненную жидкостью (например, водой) помещают в измерительную ячейку дифференциального сканирующего калориметра (ДСК). ДСК способны работать при различных температурах (диапазон зависит от модели калориметра). Для изменения температуры камеры калориметра осуществляют нагрев камеры или ее охлаждение. Контролируемое изменение температуры камеры калориметра называется сканированием по температуре, отсюда название - сканирующий калориметр. Сканирующий режим позволяет, в частности, изучать фазовые переходы, сопровождающиеся выделением или поглощением тепла, такие, например, как изменение фазового состояния жидкости.

Камера калориметра охлаждается так, чтобы вся жидкость замерзла (в экспериментах с водой, например до -30°C), и далее происходит плавный медленный нагрев камеры калориметра. В ходе эксперимента измеряют тепловой поток в зависимости от температуры камеры калориметра. Изменение теплового потока свидетельствует о фазовом переходе определенного количества вещества (чем сильнее изменение, тем большее количество вещества) при данной температуре.

Типичный ДСК оборудован двумя ячейками, в одну из которых (S) помещают исследуемый образец. Другая ячейка (R) является ячейкой сравнения и может, в зависимости от эксперимента, либо оставаться пустой, либо также заполняться. Ячейки теплоизолированы друг от друга, находятся при контролируемой температуре, которая может изменяться с помощью нагревателя камеры калориметра. Измерение разницы температур между каждой из ячеек и камерой калориметра осуществляют, как правило, с помощью термопар. Правильная калибровка калориметра позволяет рассчитать разницу тепловых потоков между ячейками калориметра и камерой калориметра. Суммирование разницы тепловых потоков по времени позволяет определить разницу количества тепла, выделившегося или поглотившегося в каждой из ячеек. В ДСК экспериментальные ячейки сменные, и в зависимости от типа эксперимента могут применяться различные пары экспериментальных ячеек.

В связи с конечной температуропроводностью материала камеры калориметра, и измерительной ячейки, всегда существует некоторое запаздывание между измеряемой температурой камеры калориметра и реальной температурой измерительной ячейки в данный момент. Кроме того, сигнал «размывается», то есть, например, вместо узкого пика (повышение теплового потока) при нуле градусов при измерении фазового перехода воды получается некоторая кривая конечной толщины - характеризуемой так называемой тепловой постоянной калориметра. Для уменьшения эффекта размазывания кривой теплового потока, камера калориметра и измерительные ячейки изготавливают из материала с высокой температуропроводностью (например, серебро). Конечная температуропроводность образца в ячейке также влияет на уширение измеряемой кривой.

Стандартная цилиндрическая ячейка калориметра, используемая для экспериментов по термопорометрии, представляет из себя сосуд цилиндрической формы, герметично закрываемый крышкой (см., например, - “Principles of Thermal Analysis and Calorimetry” под редакцией P.J. Haines, 2002, стр 72). При низкой температуропроводности образца в ходе эксперимента образец прогревается неравномерно, что ухудшает точность проводимых экспериментов по термопорометрии. Температуропроводность в данной ячейке определяется температуропроводностью образца в ячейке и поэтому может быть низкой. Ячейка не предусматривает возможность ее вакуумирования перед заполнением образцом и, таким образом, не позволяет исследователям быть уверенными в том, что все пустотное пространство ячейки было заполнено.

Технический результат, достигаемый при реализации предлагаемого изобретения, заключается в обеспечении повышенной температуропроводности образца в ячейке, уменьшении эффекта запаздывания температуры, а также в обеспечении возможности работы как с твердыми пористыми телами цилиндрической формы, так и с порошками. Кроме того, предлагаемая измерительная ячейка позволяет производить вакуумирование образцов и заполнение жидкими средами, за счет чего обеспечивается заполнение всего пустотного объема ячейки жидкостью и отсутствие воздушных пузырей, которые снижают температуропроводность. Предлагаемая конструкция измерительной ячейки универсальна и может быть использована в различных ДСК.

Изобретение поясняется чертежами, где на фиг. 1 показана конструкция измерительной ячейки в соответствии с предлагаемым изобретением, а на фиг. 2 показан вариант выполнения диска, используемого в ячейке.

Как показано на фиг. 1, основными элементами конструкции ячейки ДСК являются корпус 1, гермоввод 2, металлические вставки в виде дисков 3 с исследуемыми образцами 4 и герметичная крышка 5. Диски 3 закреплены в корпусе 1 посредством крышки 5, у которой есть уплотнительное кольцо и она скользит с сопротивлением внутри корпуса 1. Количество дисков 3 может быть разным. Гермоввод 2 размещен в верхней части корпуса 1 и предназначен для подключения вакуумного насоса (на фиг. 1 не показан) и последующего заполнения жидкостью. Гермоввод представляет из себя вакуумное соединение резьбового типа с вакуумным уплотнением металл-металл или любое другое вакуумное уплотнение, например, металл-тефлон. Внешний вид диска 3 представлен на фиг. 2. В верхней части каждого диска 3 выполнено углубление 6 для размещения исследуемого образца. Для вакуумирования и заполнения жидкостью исследуемого образца 4 в днище диска выполнено по меньшей мере одно отверстие 8; на внешней боковой поверхности диска 3 также могут быть выполнены продольные и кольцевые канавки 7.

Предлагаемая ячейка для дифференциального сканирующего калориметра (фиг. 1) представляет из себя цилиндрический корпус из металла с высокой температуропроводностью (например, серебро, медь или сталь), в который помещают металлические вставки - диски 3 определенной формы, выполненные из металла с высокой температуропроводностью (например, серебро, медь или сталь). Наличие таких дисков позволяет значительно повысить температуропроводность образца в ячейке и таким образом повысить точность термопорометрических измерений. Форма дисков позволяет использовать в качестве образца как порошки, так и твердые тела цилиндрической формы (форма диска).

Ячейка работает следующим образом. В диски 3 (фиг. 1) устанавливают исследуемые образцы. Диски с исследуемыми образцами устанавливают в корпус 1 и закрепляют, например, закрывают корпус 1 снизу герметичной крышкой 5, имеющей вакуумное кольцевое уплотнение. Через гермоввод 2 производят вакуумирование и заполнение ячейки жидкостью. Ячейка готова к работе.

Особенностью предлагаемой ячейки является возможность насыщать пористый материал жидкостью непосредственно в ячейке уже после заполнения ее сухим материалом. Для этого после сборки ячейки с образцами к гермовводу 2 присоединяют вакуумную линию, ячейку с образцами вакуумируют и затем через тот же гермоввод подают жидкость, заполняющую поры образца и пустоты измерительной ячейки. Благодаря этому можно точно оценить объем жидкости заполняющей поры образца.

Гермоввод 2 закрывают и устанавливают ячейку с образцами в ДСК. Далее проводят эксперимент по термопорометрии. Камеру ДСК охлаждают, так, чтобы вся жидкость в ячейке замерзла, а затем медленно нагревают, производя измерения теплового потока. Измерения можно также проводить при охлаждении образца. Проводят интерпретацию данных измерений с целью получения информации о распределении пор образца по размерам.

В качестве образцов могут использоваться порошки - так, например порошки стекол с контролируемым размером пор (CPG - controlled pore glass) могут быть использованы для точной предварительной калибровки калориметра. Так как размер пор в этих порошках хорошо известен, измеренная кривая распределения теплового потока может быть соотнесена с размером пор и использована в дальнейшем для интерпретации измерений пористых сред с более сложным распределением пор по размерам.

В качестве образцов могут использоваться также твердые тела цилиндрической формы (диск), так, например, могут использоваться образцы горной породы. Например, в случае использования ДСК (ВТ2.15 Setaram) внешний размер ячейки составляет около 15 мм в диаметре. Размер одного цилиндра/диска образца может составлять около 10 мм в диаметре и, например, 2 мм в высоту, при этом можно использовать около 20 дисков, чтобы заполнить ячейку целиком.


ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА ДИФФЕРЕНЦИАЛЬНОГО СКАНИРУЮЩЕГО КАЛОРИМЕТРА
ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА ДИФФЕРЕНЦИАЛЬНОГО СКАНИРУЮЩЕГО КАЛОРИМЕТРА
ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА ДИФФЕРЕНЦИАЛЬНОГО СКАНИРУЮЩЕГО КАЛОРИМЕТРА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 112.
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
29.05.2018
№218.016.5830

Оптоволоконный датчик для скважинных сейсмических исследований

Изобретение относится к области геофизики и может быть использовано при проведении скважинных сейсморазведочных работ. Оптоволоконный датчик для скважинной сейсморазведки содержит оптоволоконный кабель, опускаемый в скважину, и по меньшей мере одну группу резонаторов, расположенную на...
Тип: Изобретение
Номер охранного документа: 0002654973
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5a3c

Способ гидроразрыва углеводородного пласта

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин. Для осуществления гидроразрыва пласта в пробуренную в пласте скважину закачивают жидкость гидроразрыва...
Тип: Изобретение
Номер охранного документа: 0002655513
Дата охранного документа: 28.05.2018
11.06.2018
№218.016.611c

Состав для обработки скважины

Изобретение относится к гидравлическому разрыву подземного пласта. Состав для обработки скважины содержит: низковязкую несущую жидкость, имеющую вязкость менее чем 50 мПа⋅с при скорости сдвига 170 с и температуре 25°С; диспергированный в несущей жидкости проппант и диспергированное в несущей...
Тип: Изобретение
Номер охранного документа: 0002657065
Дата охранного документа: 08.06.2018
28.06.2018
№218.016.6859

Способ определения профиля теплопроводности горных пород в скважине

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины,...
Тип: Изобретение
Номер охранного документа: 0002658856
Дата охранного документа: 25.06.2018
29.06.2018
№218.016.6910

Способ определения характеристик потока жидкости в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и предназначено, в частности, для определения характеристик потока жидкости в скважине. Технический результат - обеспечение возможности измерений характеристик потока жидкости в течение долгого времени с...
Тип: Изобретение
Номер охранного документа: 0002659106
Дата охранного документа: 28.06.2018
Показаны записи 71-78 из 78.
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d8c2

Способ определения обводненности нефтеводяной смеси, добываемой из нефтяной скважины

Изобретение относится к способам определения состава водонефтяной смеси в скважине и, в частности, к способам, использующим измерение параметров потока добываемого флюида в трубке Вентури, через которую в основной ствол скважины обеспечивают поступление нефтеводяной смеси, добываемой из...
Тип: Изобретение
Номер охранного документа: 0002623389
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e341

Способ определения механических свойств материала

Изобретение относится к способам определения механических свойств материалов, а именно модуля Юнга и коэффициента Пуассона. Инструмент, имеющий по меньшей мере один датчик колебаний и по меньшей мере один выступ, приводят в контакт с материалом и вдавливают по меньшей мере один выступ...
Тип: Изобретение
Номер охранного документа: 0002626067
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.f265

Способ определения механических свойств породы пласта-коллектора

Изобретение относится к области исследования свойств горных пород. При этом осуществляют отбор по меньшей мере одного образца породы пласта-коллектора и на отобранном образце породы определяют плотность, пористость и компонентный состав породы. Но основе полученных значений создают...
Тип: Изобретение
Номер охранного документа: 0002636821
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fe1a

Способ предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе

Для предотвращения формирования пробкового режима течения газожидкостной смеси в непрямолинейной скважине или трубопроводе выявляют по меньшей мере одно место наиболее вероятного формирования жидких пробок в скважине или трубопроводе методом математического моделирования на основе ожидаемых...
Тип: Изобретение
Номер охранного документа: 0002638236
Дата охранного документа: 12.12.2017
04.04.2018
№218.016.338a

Способ определения профиля притока флюида в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока добываемого флюида в многопластовых скважинах с несколькими интервалами перфорации. Технический результат заключается в повышении точности определения профиля притока...
Тип: Изобретение
Номер охранного документа: 0002645692
Дата охранного документа: 27.02.2018
26.10.2018
№218.016.969a

Способ определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца. На полученном изображении внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670716
Дата охранного документа: 24.10.2018
+ добавить свой РИД