×
25.08.2017
217.015.a0fe

Результат интеллектуальной деятельности: СПЛАВ НА ОСНОВЕ ТИТАНА (ВАРИАНТЫ) И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к титановым сплавам, используемым для изготовления силовых конструкций, длительно работающих при температурах до 350 °С. Сплав содержит, мас. %: алюминий - 1,8-3,5, молибден - 1,0-3,0, ванадий - 8,0-12,0, хром - 2,5-4,6, железо - 0,3-1,6, цирконий - 0,4-2,0, олово - 0,4-2,0, рутений - 0,01-0,16, титан - остальное. Сплав может дополнительно содержать иттрий и/или гадолиний - 0,01-0,16. Сплав характеризуется высокими характеристиками предела прочности при 20°С в закаленном и термически упрочненном состояниях при сохранении предела технологической пластичности сплава на удовлетворительном уровне и коррозионной стойкости против щелевой и питтинговой коррозии. 3 н. и 3 з.п. ф-лы, 3 табл., 8 пр.

Изобретение относится к области цветной металлургии, а именно к созданию универсальных конструкционных высокопрочных высокотехнологичных титановых сплавов, используемых для изготовления широкой номенклатуры деформированных полуфабрикатов, в том числе тонколистовых, которые могут быть использованы в силовых конструкциях авиационной и ракетно-космической техники, в энергетических установках, изделиях судостроительной, химической и пищевой промышленности, длительно работающих при температурах до 350°С.

Известен сплав на основе титана, раскрытый в /RU 2086694 С1, 10.08.1997/, имеющий следующий химический состав, мас. %:

алюминий 0,4-6,0
марганец 0,5-2,0
железо 0,03-0,3
цирконий 0,03-0,3
медь 0,03-0,3
никель 0,03-0,3
кремний 0,03-0,3
кислород 0,03-0,3
углерод 0,02-0,2
азот 0,004-0,04
водород 0,002-0,008
титан остальное

Данный сплав обладает высоким уровнем технологической пластичности, позволяющим изготавливать из него листовые полуфабрикаты путем холодной прокатки, а также проводить холодную или теплую штамповку деталей из них.

Недостатками известного сплава, предназначенного для изготовления деталей и узлов авиакосмической техники, в частности сварных и сложнопрофильных листовых конструкций, являются: его неспособность к эффективному упрочнению путем термической обработки, низкий уровень прочностных свойств и высокая склонность к испарению марганца при выплавке слитков.

Известен сплав на основе титана, раскрытый в /RU 2269584 С1, 10.02.2006/, имеющий следующий химический состав, мас. %:

алюминий 3,5-4,4
ванадий 2,0-4,0
молибден 0,1-0,8
железо макс.0,4
кислород макс.0,25
титан остальное

Недостатком данного сплава является низкий уровень прочностных свойств и неспособность к самозакаливанию.

Наиболее близким аналогом является бета-титановый сплав, раскрытый в /RU 2418087 С2, 3-ий независимый и 4-ый зависимый пункты формулы изобретения, 10.05.2011/, имеющий следующий химический состав, мас. %:

алюминий 2,0-5,0
молибден и ванадий 4,0-10,0
хром 5,5-11,0
железо 2,0-4,0
цирконий 1,0-4,0
титан остальное

причем содержание молибдена в сплаве составляет не менее 0,5 мас. % и содержание ванадия также составляет не менее 0,5 мас. %.

Недостатками сплава-прототипа являются склонность к ликвации из-за высокого содержания железа и хрома, что может привести к снижению уровня механических свойств материала, а также высокий уровень прочности в состоянии после закалки/отжига, приводящий к более интенсивному износу штампового инструмента и технологической оснастки при изготовлении деформированных полуфабрикатов.

Технической задачей предложенной группы изобретений является создание универсального высокопрочного титанового сплава, легированного редкоземельными металлами (РЗМ) и рутением, обладающего повышенными механическими характеристиками, из которого возможно изготовление полуфабрикатов широкого сортимента (листы, плиты, прутки, поковки, штамповки) и сложнопрофильных конструкций, в частности из листовых полуфабрикатов путем штамповки вхолодную.

Техническим результатом предложенной группы изобретений является повышение предела прочности сплавов на основе титана σB при 20°С в закаленном и термически упрочненном состояниях при сохранении предела технологической пластичности сплава на удовлетворительном уровне, а также повышение коррозионной стойкости против щелевой и питтинговой коррозии.

Для достижения технического результата предложен сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, при этом он дополнительно содержит олово и рутений при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,5
молибден 1,0-3,0
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,3-1,6
цирконий 0,4-2,0
олово 0,4-2,0
рутений 0,01-0,16
титан остальное

Вышеуказанный сплав может содержать кислород в количестве от 0,04 до 0,15 мас. %.

Для достижения технического результата также предложен сплав на основе титана, содержащий алюминий, молибден, ванадий, хром, железо и цирконий, при этом он дополнительно содержит рутений, олово и иттрий и/или гадолиний при следующем соотношении компонентов, мас. %:

алюминий 1,8-3,7
молибден 1,0-3,1
ванадий 8,0-12,0
хром 2,5-4,6
железо 0,1-1,6
цирконий 0,4-2,0
рутений 0,01-0,16
олово 0,4-2,2
иттрий и/или гадолиний 0,01-0,16
титан остальное

Указанный сплав на основе титана может содержать кислород в количестве от 0,04 до 0,15 мас. %.

Предпочтительно, чтобы суммарное содержание иттрия, гадолиния и рутения составляло 0,05-0,3 мас. %.

Технический результат также достигается в изделии, которое может быть выполнено из любого предложенного сплава на основе титана.

Экспериментально было установлено, что для реализации высокой прочности конечных изделий, сохранения удовлетворительной технологической пластичности полуфабрикатов на стадии их изготовления, повышения коррозионной стойкости против щелевой и питтинговой коррозии необходимо одновременное соблюдение ряда условий по легированию сплава.

Установлено, что снижение общей степени легирования псевдо-β титановых сплавов β-стабилизирующими элементами (в частности Mo, V, Cr, Fe) сопровождается снижением эффекта самозакаливания, приводит к снижению технологичности сплава из-за выделения частиц α-фазы в процессе охлаждения при проведении межоперационных отжигов в промышленных вакуумных печах большого объема и, как следствие, усложнению технологии и повышению стоимости изготовления листовых полуфабрикатов. Чрезмерное легирование сплава β-стабилизаторами приводит к повышению его плотности, стабильности β-твердого раствора и, как результат, увеличению времени проведения упрочняющей термической обработки.

Исследование влияния алюминия на свойства титановых сплавов показали, что его содержание четко коррелирует с прочностными и пластическими свойствами. На основе анализа выявленных корреляций авторы установили минимальное содержание алюминия с целью повышения уровня прочностных свойств сплава и подавления образования крайне нежелательной атермической ω-фазы, резко снижающей его пластичность. Максимальное содержание алюминия обусловлено необходимостью сохранения удовлетворительного уровня технологической пластичности полуфабрикатов.

Установленное авторами количество нейтральных упрочнителей (олова и циркония) в сплаве также позволяет предотвратить образование охрупчивающей атермической ω-фазы и повысить прочностные характеристики. Комплексное легирование данными элементами эффективно упрочняет α-фазу и позволяет добиться большего эффекта от проведения упрочняющей термической обработки.

Указанное содержание молибдена и ванадия обеспечивает высокую технологичность сплава и возможность получения путем упрочняющей термической обработки умеренно высоких прочностных характеристик.

Уменьшенное по сравнению с прототипом содержание хрома и железа обусловлено рядом факторов. Несмотря на то, что эти элементы хорошо упрочняют сплавы и являются сильными β-стабилизаторами, в сплавах с их высоким содержанием существует возможность образования охрупчивающих сплав интерметаллидов в результате эвтектоидного превращения, происходящего при длительных изотермических выдержках при повышенных температурах в процессе эксплуатации, а при выплавке слитков велика вероятность образования химических неоднородностей. Также известно, что высокое содержание данных элементов снижает коррозионную стойкость, в частности повышается склонность к коррозионному растрескиванию под напряжением, что обусловлено усилением структурной коррозии за счет выделения интерметаллидов в процессе эксплуатации при повышенных температурах.

Авторами установлено, что введение в сплав рутения в указанном количестве применено в качестве катодного легирования, которое повышает коррозионную стойкость - уменьшает питтинговую коррозию, повышает сопротивление щелевой коррозии до 200°С, снижает склонность к коррозионному растрескиванию. Микродобавки рутения также позволяют повысить прочность в термически упрочненном состоянии при сохранении удовлетворительной технологической пластичности сплава.

Легирование сплава кислородом позволяет реализовать более высокий уровень прочности в термически упрочненном состоянии, повысить эффективность и сократить время термической обработки. При обеспечении содержания кислорода в указанном количестве вероятность, что показатели технологической пластичности сохранятся на удовлетворительном уровне, повышается. Кислород, являясь α-стабилизатором, в указанных количествах оказывает наиболее эффективное твердорастворное упрочнение титановых сплавов, образуя с титаном твердые растворы внедрения.

Введение редкоземельных металлов - иттрия и гадолиния в указанном количестве позволяет реализовать эффект рафинирования микрообъемов сплава, что повышает технологическую пластичность сплава при сохранении прочностных характеристик на высоком уровне. Редкоземельные металлы уменьшают критический размер зародыша частиц α-фазы, что приводит к более равномерному и дисперсному распаду β-фазы при старении. Это обеспечивает более высокий уровень прочностных свойств в состоянии после упрочняющей термической обработки.

Известно, что высоколегированные титановые сплавы, преимущественно легированные эвтектоидными β-стабилизаторами (Cr, Fe), обладают более низкой коррозионной стойкостью (например, повышенной склонностью к коррозионному растрескиванию в морской воде, склонностью к питтинговой и щелевой коррозии) по сравнению с техническим титаном и малолегированными сплавами псевдо-α класса. Однако они обладают высокой прочностью в термически упрочненном состоянии, сравнимой с прочностью (α+β)-сплавов мартенситного класса, и высокой технологичностью в закаленном (отожженном) состоянии, позволяющей изготавливать сложнопрофильные конструкции из листовых полуфабрикатов путем штамповки вхолодную.

Суммарное содержание иттрия, гадолиния и рутения 0,05-0,3 мас. % предпочтительно из-за ряда факторов. Минимальная граница суммарного содержания вышеуказанных легирующих элементов обусловлена тем, что меньшее их количество обеспечивает лишь слабое проявление положительных эффектов от микролегирования (повышения прочности, рафинирования микрообъемов сплава, повышения коррозионной стойкости). При повышении суммарного содержания микролегирующих добавок до определенной концентрации технический эффект от их введения увеличивается. Но по причине низких пределов растворимости иттрия, гадолиния и рутения при увеличении их суммарной концентрации более 0,3 мас. % в структуре сплава выделяется большое количество дисперсных частиц, что обуславливает снижение технологичности и повышение склонности к зарождению усталостных трещин на них в процессе эксплуатации.

Примеры осуществления

Было осуществлено 9 плавок высокопрочного сплава на основе титана в виде слитков методом тройного вакуумно-дугового переплава. Затем слитки подвергали деформационной обработке путем всесторонней ковки в квазиизотермических условиях на сутунки размером (40-45)×180-220×L мм, где L - фактически полученная длина сутунки. Полученные сутунки были подготовлены под прокатку путем строгания по всем поверхностям «как чисто». Прокатка полученных сутунок проводилась в 4 этапа: горячая прокатка на лист толщиной 7 мм, теплая прокатка на 4 мм, холодная прокатка в 2 этапа до толщины готового листа 2 мм. Промежуточные листовые полуфабрикаты между операциями прокатки подвергались закалке на β-фазу, пескоструйной обработке и травлению. Готовые листы подвергались термической обработке (старению) по целевым режимам: часть листов с каждой плавки подвергалась закалке на β-фазу, а часть - упрочняющей термической обработке (закалка с последующим старением).

Состав предлагаемого сплава и сплава-прототипа приведен в таблице 1.

Далее определяли следующие характеристики полученных полуфабрикатов (слитки, промежуточные полуфабрикаты, листы):

- предел прочности определяли в закаленном и состаренном (термически упрочненном) состоянии путем проведения испытаний на растяжение образцов при комнатной температуре по ГОСТ 1497,

- относительное удлинение определяли в состаренном (термически упрочненном) состоянии путем проведения испытаний на растяжение образцов при комнатной температуре по ГОСТ 1497,

- предел технологической пластичности определяли в закаленном состоянии путем деформации цилиндрических образцов осадкой по ГОСТ 8817,

- была проведена оценка ликвации легирующих элементов в полученных слитках, оцененная на предварительно деформационных и термически обработанных темплетах посредством анализа равномерности распределения выделений вторичной α-фазы (по 10 бальной шкале, 1 - образование значительного количества химических неоднородностей, 10 - полное отсутствие признаков химических неоднородностей).

Механические и технологические свойства предлагаемого сплава и сплава-прототипа приведены в таблице 2.

Были проведены коррозионные испытания на щелевую и питтинговую коррозию в автоклаве в среде 20%-ного раствора NaCl при температуре 220°С в течение 2000 часов.

Оценка склонности к щелевой коррозии и питтингу выполнена визуально при осмотре поверхности образцов с использованием оптического микроскопа при увеличении 12. Выявляли питтинги диаметром не менее 0,1 мм.

Результаты испытаний на коррозионную стойкость приведены в таблице 3.

Как видно из таблицы 2, в предлагаемом сплаве предел прочности в закаленном состоянии понизился на 12-25%, предел прочности в состоянии после упрочняющей термической обработки повысился на 7-15% при сохранении хорошего уровня технологической пластичности. Стойкость против щелевой и питтинговой коррозии превосходит аналогичные характеристики сплава-прототипа.

Использование предлагаемого сплава на основе титана позволит изготавливать различные конструктивные элементы, в частности высокопрочные сложнопрофильные листовые изделия, что позволить снизить их вес за счет более высокого уровня удельной прочности и повысить надежность по сравнению с традиционно применяемыми листовыми титановыми сплавами.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 370.
20.08.2015
№216.013.70f2

Способ получения композиционного материала на основе железа

Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002560484
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70f3

Высокопрочный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к высокопрочным сплавам пониженной плотности с повышенной вязкостью разрушения на основе системы алюминий-медь-литий, и может быть использовано для изготовления элементов конструкций в авиакосмической промышленности, таких как лонжероны,...
Тип: Изобретение
Номер охранного документа: 0002560485
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70f4

Состав для удаления продуктов атмосферной коррозии с поверхности коррозионностойких сталей

Изобретение относится к области химической обработки поверхности коррозионностойких сталей. Предложенный состав содержит ортофосфорную кислоту, щавелевую кислоту, поверхностно-активные вещества в виде синтанола и кислотного технического моющего средства, дезинфицирующую добавку, представляющую...
Тип: Изобретение
Номер охранного документа: 0002560486
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.76af

Способ производства многослойного пенопласта

Изобретение относится к вспененным продуктам, в частности к вспененным полимерным материалам, используемым в качестве легкого и теплостойкого заполнителя в производстве сэндвич-панелей. Способ производства многослойного пенопласта включает следующие стадии: приготовление по меньшей мере двух...
Тип: Изобретение
Номер охранного документа: 0002561972
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7783

Высокопрочная дисперсионно-твердеющая сталь

Изобретение относится к области металлургии, а именно к созданию высокопрочных дисперсионно-твердеющих сталей для высоконагруженных зубчатых колес и подшипников, работающих при температуре до 500°C. Сталь содержит, мас.%: углерод 0,22-0,27, кремний 0,2-0,4, марганец 0,2-0,6, хром 3,3-4,0,...
Тип: Изобретение
Номер охранного документа: 0002562184
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7785

Способ получения деформируемой заготовки из титанового сплава

Изобретение относится к области металлургии и может быть использовано при получении заготовок из двухфазных титановых сплавов, применяемых, в частности, в авиационной промышленности. Исходную заготовку нагревают до температуры ниже температуры полного полиморфного превращения. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002562186
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7789

Сплав на основе магния

Изобретение относится к области металлургии, а именно: к литейным сплавам на основе магния. Предложен сплав на основе магния, содержащий, мас. %: Zn 0,3-1,0, Zr 0,4-0,8, Cd 0,001-0,8, Yb 0,001-0,4, по крайней мере, два редкоземельных металла, выбранных из группы: Nd, Y, Gd, Dy 3,0-10,5, Mg -...
Тип: Изобретение
Номер охранного документа: 0002562190
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afe

Способ изготовления длинномерной заготовки из титанового сплава

Изобретение относится к обработке металлов давлением и может быть использовано при производстве длинномерных заготовок типа прутков и профилей из конструкционных титановых сплавов методом изотермической экструзии. Производят ковку или прокатку слитка при температуре β-области с получением...
Тип: Изобретение
Номер охранного документа: 0002563083
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7aff

Способ получения высокотемпературного композиционного материала на основе никеля

Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002563084
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3e

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей. Предложен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля....
Тип: Изобретение
Номер охранного документа: 0002563403
Дата охранного документа: 20.09.2015
Показаны записи 61-70 из 336.
20.08.2015
№216.013.70f2

Способ получения композиционного материала на основе железа

Настоящее изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе железа включает перемешивание порошков для матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002560484
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70f3

Высокопрочный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к высокопрочным сплавам пониженной плотности с повышенной вязкостью разрушения на основе системы алюминий-медь-литий, и может быть использовано для изготовления элементов конструкций в авиакосмической промышленности, таких как лонжероны,...
Тип: Изобретение
Номер охранного документа: 0002560485
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.70f4

Состав для удаления продуктов атмосферной коррозии с поверхности коррозионностойких сталей

Изобретение относится к области химической обработки поверхности коррозионностойких сталей. Предложенный состав содержит ортофосфорную кислоту, щавелевую кислоту, поверхностно-активные вещества в виде синтанола и кислотного технического моющего средства, дезинфицирующую добавку, представляющую...
Тип: Изобретение
Номер охранного документа: 0002560486
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.76af

Способ производства многослойного пенопласта

Изобретение относится к вспененным продуктам, в частности к вспененным полимерным материалам, используемым в качестве легкого и теплостойкого заполнителя в производстве сэндвич-панелей. Способ производства многослойного пенопласта включает следующие стадии: приготовление по меньшей мере двух...
Тип: Изобретение
Номер охранного документа: 0002561972
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7783

Высокопрочная дисперсионно-твердеющая сталь

Изобретение относится к области металлургии, а именно к созданию высокопрочных дисперсионно-твердеющих сталей для высоконагруженных зубчатых колес и подшипников, работающих при температуре до 500°C. Сталь содержит, мас.%: углерод 0,22-0,27, кремний 0,2-0,4, марганец 0,2-0,6, хром 3,3-4,0,...
Тип: Изобретение
Номер охранного документа: 0002562184
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7785

Способ получения деформируемой заготовки из титанового сплава

Изобретение относится к области металлургии и может быть использовано при получении заготовок из двухфазных титановых сплавов, применяемых, в частности, в авиационной промышленности. Исходную заготовку нагревают до температуры ниже температуры полного полиморфного превращения. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002562186
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7789

Сплав на основе магния

Изобретение относится к области металлургии, а именно: к литейным сплавам на основе магния. Предложен сплав на основе магния, содержащий, мас. %: Zn 0,3-1,0, Zr 0,4-0,8, Cd 0,001-0,8, Yb 0,001-0,4, по крайней мере, два редкоземельных металла, выбранных из группы: Nd, Y, Gd, Dy 3,0-10,5, Mg -...
Тип: Изобретение
Номер охранного документа: 0002562190
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afe

Способ изготовления длинномерной заготовки из титанового сплава

Изобретение относится к обработке металлов давлением и может быть использовано при производстве длинномерных заготовок типа прутков и профилей из конструкционных титановых сплавов методом изотермической экструзии. Производят ковку или прокатку слитка при температуре β-области с получением...
Тип: Изобретение
Номер охранного документа: 0002563083
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7aff

Способ получения высокотемпературного композиционного материала на основе никеля

Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002563084
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3e

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей. Предложен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля....
Тип: Изобретение
Номер охранного документа: 0002563403
Дата охранного документа: 20.09.2015
+ добавить свой РИД