×
25.08.2017
217.015.9ffc

Результат интеллектуальной деятельности: Ионный диод с магнитной самоизоляцией

Вид РИД

Изобретение

Аннотация: Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик. Ионный диод с магнитной самоизоляцией содержит потенциальный электрод (1), полосковый заземленный электрод (2), соединенный одной стороной с корпусом камеры, и установленный на заземленном электроде металлический экран (4), который выполнен замкнутым, коробчатой формы. При этом ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода. Технический результат - уменьшение расходимости ионного пучка, повышение плотности энергии МИП в фокусе и ее стабильности в серии импульсов. 8 ил.

Изобретение относится к ускорительной технике и предназначено для получения мощных пучков заряженных частиц, которые используются для радиационно-пучкового модифицирования изделий из металлов с целью повышения их эксплуатационных характеристик.

Известны диоды с внешней магнитной изоляцией, предназначенные для генерации импульсных мощных ионных пучков (МИП) [Быстрицкий В.М., Диденко А.Н. Мощные ионные пучки. М.: Энергоатомиздат, 1984. 152 с.], состоящие из анода, катода и источника внешнего магнитного поля. МИП формируются путем прямого ускорения ионов из плазмы, образованной на поверхности анода при импульсном пробое по поверхности диэлектрических вставок или при инжекции плазмы в прианодную область от внешнего плазменного источника. Недостатком известного устройства является ограниченный ресурс работы. Кроме того, в таких источниках можно получать пучки с ограниченным типом ионов, определяемым диэлектриком. Диоды с инжекцией плазмы от внешнего плазменного источника принципиально позволяют получать ионные пучки различного состава, но сложны в реализации, поскольку на аноде диода требуется создать достаточно однородный слой плазмы плотностью более 1013 см-3 с возможностью изменять состав плазмы. Дополнительный источник напряжения для создания магнитного поля в диоде, системы синхронизации и ввода плазмы в зазор усложняют конструкцию ионного диода, снижают надежность и эффективность генерации МИП.

Наиболее близким к предлагаемому устройству является выбранный нами за прототип полосковый ионный диод с магнитной самоизоляцией [G.E. Remnev, I.F. Isakov, et all, High-power ion sources for industrial application // Surf. and Coatings Technol., 1997, vol. 96, pp. 103-109]. Полосковый ионный диод с магнитной самоизоляцией состоит из потенциального электрода и заземленного электрода, соединенного с корпусом камеры с одной стороны. Потенциальный электрод изготовлен из графита длиной 24 см и шириной 4,5 см, заземленный электрод - из полосы нержавеющей стали длиной 28 см, шириной 4,5 см и толщиной 3 мм, с прорезями 0,4 см×5 см, прозрачность 60%. Ширина потенциального и заземленного электродов одинакова. На заземленном электроде установлены экраны, выполненные в виде продольных пластин с прорезями. Для создания плотной плазмы необходимого состава на поверхности потенциального электрода диода используется явление взрывной электронной эмиссии. Поперечное магнитное поле в анод-катодном зазоре формируется собственным током диода при протекании по заземленному электроду. В этой конструкции диода дополнительный источник магнитного поля, система синхронизации и ввода плазмы в зазор не требуются, что значительно упрощает конструкцию генератора МИП.

Ионный диод с магнитной самоизоляцией работает следующим образом. От генератора наносекундных импульсов к потенциальному электроду ионного диода прикладываются сдвоенные разнополярные импульсы - первый отрицательный и второй положительный. В течение первого импульса на поверхности потенциального электрода диода образуется взрывоэмиссионная плазма. В течение второго импульса из взрывоэмиссионной плазмы эмитируют ионы, которые ускоряются в анод-катодном зазоре. Через прорези в заземленном электроде основная часть ионов проходит в область транспортировки МИП. В течение генерации ионного пучка (второй импульс) электроны эмитируют с поверхности заземленного электрода и далее дрейфуют вдоль его поверхности от точки заземления к свободному концу электрода.

Недостатком устройства-прототипа является высокая расходимость ионного пучка при транспортировке от диода до мишени. Ток, протекающий по заземленному электроду, формирует магнитное поле не только в анод-катодном зазоре диода, но и в области транспортировки ионов до мишени. Продольные пластины с прорезями, установленные на заземленном электроде, не обеспечивают достаточное ослабление магнитного поля в области транспортировки МИП. Расходимость ионного пучка достигает 10-11° (половинный угол). Для получения мощных ионных пучков с высокой плотностью энергии при фокусировке необходимо снижать расходимость ионного пучка. Расходимость ионного пучка определяется влиянием паразитных электромагнитных полей в области транспортировки от диода до мишени и искажением электрического поля в А-К зазоре диода.

Технический результат предлагаемого изобретения заключается в снижении расходимости ионного пучка с 10° до 5° и повышении плотности энергии МИП в фокусе с 2-3 Дж/см2 до 10 Дж/см2. Дополнительный технический результат заключается в повышении стабильности работы ионного диода. Стандартная девиация плотности энергии МИП в фокусе диода снизилась в серии импульсов с 10-12% до 5-6%.

Технический результат достигается тем, что в ионном диоде с магнитной самоизоляцией, содержащем потенциальный электрод, полосковый заземленный электрод, который соединен одной стороной с корпусом камеры, и металлический экран, установленный на заземленном электроде, согласно предложенному решению, металлический экран выполнен замкнутым, коробчатой формы, а ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода.

Изобретение поясняется графическими материалами. Фиг. 1 - пример выполнения конструкции фокусирующего полоскового диода с магнитной самоизоляцией, где обозначено: 1 - потенциальный электрод, 2 - заземленной электрод, 3 - точка заземления, 4 - экран, 5 - конец диода. Фиг. 2 - сечение А-А фиг. 1. Фиг. 3 - представлено распределение плотности энергии МИП в фокусной плоскости для диода с широким потенциальным электродом и с коробчатым экраном - кривая 6, и узким потенциальным электродом с экранами в виде пластин с прорезями - кривая 7, абсолютные - Фиг. 3а и нормированные - Фиг. 3б значения. Фиг. 4 - представлено изменение плотности энергии МИП в фокусе в серии импульсов для фокусирующего диода с широким потенциальным электродом и с коробчатым экраном - Фиг. 4а, и узким потенциальным электродом с экранами в виде пластин с прорезями - Фиг. 4б. Фиг. 5 - представлен отпечаток МИП на термобумаге. Фиг. 6 - представлено распределение плотности энергии МИП для плоского полоскового диода с широким потенциальным электродом и с коробчатым экраном - Фиг. 6а, и узким потенциальным электродом с экранами в виде пластин с прорезями - Фиг. 6б. Фиг. 7 - ионный диод по прототипу с магнитной самоизоляцией плоской и фокусирующей геометрии. Фиг. 8 - пример конкретного выполнения заявляемого ионного диода с магнитной самоизоляцией плоской и фокусирующей геометрии.

Полосковый ионный диод с магнитной самоизоляцией содержит полосковый потенциальный электрод 1 и полосковый заземленный электрод 2 (фиг. 1). Заземленный электрод соединен с корпусом диодной камеры только с одной стороны в точке заземления 3. В ионном диоде с магнитной самоизоляцией для обеспечения снижения паразитных электромагнитных полей в области транспортировки ионного пучка до мишени на заземленный электрод установлен замкнутый металлический экран 4 (фиг. 1) коробчатой конструкции без прорезей. Для повышения однородности электрического поля в анод-катодном зазоре ионного диода ширина полоскового потенциального электрода 1 превышает в 1,5-2 раза ширину полоскового заземленного электрода 2 (фиг. 2).

При увеличении ширины потенциального электрода более чем в 2 раза по сравнению с заземленным электродом распределение электрического поля в анод-катодном зазоре диода не изменяется, но начинает развиваться электрический пробой между потенциальным электродом и корпусом диодной камеры.

Ионный диод с магнитной самоизоляцией работает следующим образом. От генератора наносекундных импульсов к потенциальному электроду 1 ионного диода прикладываются сдвоенные разнополярные импульсы - первый отрицательный (300-500 нс, 100-150 кВ) и второй положительный (120 нс, 250-300 кВ). В течение первого импульса на поверхности графитового потенциального электрода 1 образуется взрывоэмиссионная плазма. В течение второго импульса из взрывоэмиссионной плазмы потенциального электрода 1 эмитируют ионы, которые ускоряются в анод-катодном зазоре. Затем основная часть ионов проходит в область транспортировки МИП. В течение генерации ионного пучка (второй импульс) электроны эмитируют с поверхности заземленного электрода 2. При этом электроны движутся по заземленному электроду 2 от точки заземления 3 к точке эмиссии, формируя магнитное поле в зазоре, вектор магнитной индукции которого перпендикулярен вектору напряженности электрического поля. В скрещенных электрическом и магнитном полях (B⊥E) под действием силы Лоренца последующие электроны меняют направление движения от поперечного (с заземленного электрода к потенциальному) к продольному вдоль поверхности заземленного электрода 2 к концу диода 5.

Пример конкретного выполнения 1. Потенциальный электрод 1 фокусирующего полоскового диода изготовлен из графита длиной 22 см и шириной 9 см, рабочая сторона потенциального электрода имеет полуцилиндрическую поверхность радиусом 15 см. Заземленный электрод 2 выполнен из полосы нержавеющей стали длиной 24 см, толщиной 0,2 см и шириной 4,5 см. Рабочая поверхность заземленного электрода 2 выполнена полуцилиндрической с радиусом изгиба 14,5 см, с прорезями 0,4 см×2 см. На заземленный электрод 2 установлен экран 4 коробчатой конструкции, выполненный из нержавеющей стали толщиной 1 мм. Ширина экрана 4 (по радиусу) составляла 10 см. На фиг. 3 показано распределение плотности энергии МИП в ионном диоде с узким потенциальным электродом (по прототипу, Фиг. 7) и в ионном диоде с широким потенциальным электродом и с коробчатым экраном (по заявляемому устройству, Фиг. 8). Из фиг. 3 видно, что расходимость МИП в ионном диоде с широким потенциальным электродом и с коробчатым экраном ниже и составляет 5°. Плотность энергии МИП в фокусе при этом возросла до 10 Дж/см2. Изменение конструкции фокусирующего диода увеличило стабильность плотности энергии МИП в фокусе в серии импульсов. На фиг. 4 приведены результаты статистических исследований. Стандартная девиация плотности энергии МИП в серии импульсов снизилась с 10-15% до 5-6%.

Пример конкретного выполнения 2. Потенциальный электрод 1 плоского полоскового диода изготовлен из графита длиной 22 см и шириной 8 см. Заземленный электрод 2 выполнен из полосы нержавеющей стали длиной 24 см, толщиной 0,2 см и шириной 4,5 см. Рабочая поверхность заземленного электрода выполнена с прорезями 0,4 см×2 см, Фиг. 8. На заземленный электрод 2 установлен экран 4 коробчатой конструкции без прорезей, выполненный из нержавеющей стали толщиной 1 мм. Ширина экрана (по направлению движения ионов) составляла 6 см. На фиг. 5 приведены результаты измерения расходимости пучка камерой-обскурой. Отверстия в диафрагме 2 мм, расстояние от диафрагмы до термобумаги 50 мм, средний диаметр отпечатка МИП на термобумаге 5 мм. Измерения показали, что расходимость ионного пучка в области транспортировки не превышает 3° (половинный угол). На фиг. 6 приведено распределение плотности энергии мощного ионного пучка в плоском полосковом диоде. Изменение конструкции плоского полоскового диода увеличило однородность плотности энергии МИП в поперечном сечении.

Таким образом, установка на заземленный электрод металлического экрана коробчатой конструкции без прорезей и использование потенциального электрода шириной в 1,5-2 раза больше, чем ширина заземленного электрода, позволяют уменьшить расходимость ионного пучка, повысить плотность энергии МИП в фокусе и ее стабильность в серии импульсов.

Ионный диод с магнитной самоизоляцией, содержащий потенциальный электрод, полосковый заземленный электрод, который соединен одной стороной с корпусом камеры, и металлический экран, установленный на заземленном электроде, отличающийся тем, что металлический экран выполнен замкнутым, коробчатой формы, а ширина потенциального электрода в 1,5-2 раза больше, чем ширина заземленного электрода.
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Ионный диод с магнитной самоизоляцией
Источник поступления информации: Роспатент

Показаны записи 141-150 из 259.
04.04.2018
№218.016.2ecc

Генератор для получения стерильных радиоизотопов

Изобретение относится к генератору для получения стерильных радиоизотопов. Генератор содержит колонку с сорбентом и радиоизотопом, размещенную внутри радиационной защиты и корпуса генератора, иглу элюата, соединенную трубкой с колонкой, многоходовый кран снабжен ручкой переключения, воздушный...
Тип: Изобретение
Номер охранного документа: 0002644395
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2f2b

Устройство для измерения переменных токов высоковольтной линии электропередачи

Изобретение относится к электротехнике, к устройствам для измерения переменных токов, и может быть использовано для измерения переменных токов, протекающих в высоковольтных линиях электропередачи. Технический результат состоит в снижении массогабаритных показателей. Устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002644574
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.32fe

Масляно-смоляная композиция

Изобретение относится к области органических высокомолекулярных соединений, а именно к составам для нанесения покрытий на основе масляно-смоляной композиции, и может быть использовано в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Масляно-смоляная композиция...
Тип: Изобретение
Номер охранного документа: 0002645486
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3338

Композиционная одноупаковочная силикатная краска

Изобретение относится к составам для нанесения покрытий, а именно к композиционным силикатным краскам с органическими добавками, и может быть использовано в строительстве и быту для защиты и декоративной отделки фасадов, а также для внутренних работ в зданиях и помещениях. Композиционная...
Тип: Изобретение
Номер охранного документа: 0002645502
Дата охранного документа: 21.02.2018
29.05.2018
№218.016.598a

Способ синтеза нанодисперсного нитрида титана

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, к электротехнике и электрофизике, а именно к ускорительной технике. Способ синтеза нанодисперсного нитрида титана осуществляют путем распыления электроразрядной плазмы титана коаксиального магнитоплазменного ускорителя с...
Тип: Изобретение
Номер охранного документа: 0002655365
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5b76

Устройство для утилизации тепла вытяжного воздуха

Изобретение относится к области кондиционирования воздуха, а именно к устройствам, в которых первичный кондиционированный воздух подается от одной центральной станции к распределительной точке в помещениях для вторичной обработки, и может быть использовано в жилых, общественных и...
Тип: Изобретение
Номер охранного документа: 0002655907
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c4c

Способ тушения пожаров

Изобретение относится к противопожарной технике, в частности к способам подавления и тушения возгораний на ограниченных площадях, и может быть использовано для локализации и ликвидации возгораний в жилых помещениях, а также на промышленных и общественных объектах. Способ заключается в подаче...
Тип: Изобретение
Номер охранного документа: 0002655909
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5c98

Способ определения коэффициента турбулентной диффузии в приземном слое атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения коэффициента турбулентной диффузии в приземном слое атмосферы. Сущность: измеряют объемную активность радона одновременно на двух высотах: 0,5-2 м от поверхности земли и не менее 10 м от поверхности земли. С...
Тип: Изобретение
Номер охранного документа: 0002656114
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5ca4

Способ определения расстояния до границ объекта

Способ определения расстояния до границ объекта включает измерение размера изображения в плоскости изображений оптического прибора со светочувствительной матрицей, осуществление перемещения прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние,...
Тип: Изобретение
Номер охранного документа: 0002656130
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cb5

Способ вихретокового контроля толщины стенки металлических немагнитных труб

Изобретение относится к методам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля толщины металлического изделия и толщины диэлектрического покрытия его поверхности. Сущность заявленного изобретения заключается в том, что способ вихретокового...
Тип: Изобретение
Номер охранного документа: 0002656115
Дата охранного документа: 31.05.2018
Показаны записи 141-150 из 151.
17.02.2018
№218.016.2de7

Способ испытания элементов котельного оборудования и трубопроводов на прочность и герметичность

Изобретение относится к способам испытания на прочность и герметичность элементов котельного оборудования и трубопроводов. Сущность: котельное оборудование и трубопроводы наполняют жидкостью, нагнетая давление до величины пробного давления. После достижения величины пробного давления...
Тип: Изобретение
Номер охранного документа: 0002643681
Дата охранного документа: 05.02.2018
17.02.2018
№218.016.2e11

Способ тушения пожаров

Изобретение относится к противопожарной технике, а именно к способам тушения пожаров при возгораниях на больших площадях, и может быть использовано для локализации и ликвидации крупных лесных пожаров, а также при подавлении возгораний промышленных и общественных объектов. Способ тушения...
Тип: Изобретение
Номер охранного документа: 0002643637
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2ecc

Генератор для получения стерильных радиоизотопов

Изобретение относится к генератору для получения стерильных радиоизотопов. Генератор содержит колонку с сорбентом и радиоизотопом, размещенную внутри радиационной защиты и корпуса генератора, иглу элюата, соединенную трубкой с колонкой, многоходовый кран снабжен ручкой переключения, воздушный...
Тип: Изобретение
Номер охранного документа: 0002644395
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2f2b

Устройство для измерения переменных токов высоковольтной линии электропередачи

Изобретение относится к электротехнике, к устройствам для измерения переменных токов, и может быть использовано для измерения переменных токов, протекающих в высоковольтных линиях электропередачи. Технический результат состоит в снижении массогабаритных показателей. Устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002644574
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.32fe

Масляно-смоляная композиция

Изобретение относится к области органических высокомолекулярных соединений, а именно к составам для нанесения покрытий на основе масляно-смоляной композиции, и может быть использовано в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Масляно-смоляная композиция...
Тип: Изобретение
Номер охранного документа: 0002645486
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3338

Композиционная одноупаковочная силикатная краска

Изобретение относится к составам для нанесения покрытий, а именно к композиционным силикатным краскам с органическими добавками, и может быть использовано в строительстве и быту для защиты и декоративной отделки фасадов, а также для внутренних работ в зданиях и помещениях. Композиционная...
Тип: Изобретение
Номер охранного документа: 0002645502
Дата охранного документа: 21.02.2018
22.08.2018
№218.016.7e45

Способ получения нанокомпозита

Изобретение относится к химии, электротехнике и нанотехнологии и может быть использовано для разработки анодных материалов литий-ионных батарей нового поколения, а также чувствительных элементов газовых сенсоров. Сначала формируют массив многостенных углеродных нанотрубок (МУНТ) на подложке в...
Тип: Изобретение
Номер охранного документа: 0002664525
Дата охранного документа: 20.08.2018
12.11.2018
№218.016.9c62

Модель конвективного теплопереноса в одиночной частице угольного топлива для целей создания установок газификации твердых топлив для энергетики и промышленности

Программа предназначена для решения задач конвективного тепломассопереноса в одиночной частице угольного топлива и может применяться в прикладных научных исследованиях с целью создания установок газификации твердых топлив для энергетики и промышленности, а также в учебном процессе вузов....
Тип: Программа для ЭВМ
Номер охранного документа: 2017616145
Дата охранного документа: 01.06.2017
18.05.2019
№219.017.53cc

Способ получения сложного удобрения с бором

Изобретение относится к сельскому хозяйству. Сложное удобрение с бором получают путем азотнокислотного разложения фосфатного сырья, выделения из раствора разложения части нитрата кальция, нейтрализации раствора аммиаком, упаривания нейтрализованного раствора, введения в плав соли калия и...
Тип: Изобретение
Номер охранного документа: 0002687839
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.6344

Способ окрашивания сложного гранулированного удобрения

Изобретение относится к сельскому хозяйству. Способ окрашивания сложных гранулированных NPK-удобрений включает введение пигмента совместно с хлоридом калия в нитрофосфатный плав, смешение и последующее гранулирование, причем в качестве пигмента используют железную лазурь, которую перед...
Тип: Изобретение
Номер охранного документа: 0002688366
Дата охранного документа: 21.05.2019
+ добавить свой РИД