×
25.08.2017
217.015.9f58

АККУМУЛЯТОР ДЛЯ ХРАНЕНИЯ ВОДОРОДА В СВЯЗАННОМ СОСТОЯНИИ И КАРТРИДЖ ДЛЯ АККУМУЛЯТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002606301
Дата охранного документа
10.01.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области водородной энергетики и может быть использовано для хранения, транспортировки и распределения (подачи) водорода в топливных элементах и других энергетических установках. В основу конструкции аккумулятора водорода положена концепция модульного выполнения накопителя водорода в виде системы легко заменяемых в процессе эксплуатации картриджей, содержащих водород в связанном состоянии в водородонасыщенном пленочном покрытии, нанесенном на металлическую фольговую ленту, которая может быть свернута затем в спираль или другую форму с геометрией, обеспечивающей высокую степень компактирования. Для фиксации картриджей используется система теплообменных элементов с геометрией пчелиных сот, а устройство для выделения водорода аккумулятора имеет систему игл/ножей для разгерметизации заряженных (наводороженных) картриджей после их первоначальной загрузки в аккумулятор. Для получения возможности использования режимов термодесорбции водорода с малой инерционностью в качестве материала фольги выбираются металлы или сплавы с высоким омическим сопротивлением, концы фольги соединены с электрическими контактами на металлическом торце картриджа, соединяемыми с регулируемым источником напряжения. Малоинерционная термодесорбция водорода осуществляется омическим нагревом фольги с высоким сопротивлением, что предоставляет новые возможности для программирования параметров выделения водорода. Техническим результатом использования изобретения являются устранение взрывоопасности в аварийных ситуациях, повышение объемной плотности водорода в накопителе и улучшение его эксплуатационно-технических характеристик, в том числе минимизация времени переходных режимов выделения водорода до 0,1 с, а также уровня давления в накопителе при поставке водорода потребителю. 2 н. и 6 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к области водородной энергетики и может быть использовано для хранения, транспортировки и распределения (подачи) водорода в топливных элементах и других энергетических установках.

Уровень техники

Одной из важнейших задач водородной энергетики является создание технически и экономически обоснованных аккумуляторов для хранения водорода. Причем согласно требованиям Международного энергетического агентства системы хранения должны содержать не менее 5 мас. % водорода и выделять его при температуре не выше 373 К. Кроме того, одним из решающих критериев выбора системы аккумулирования является экономическая целесообразность ее использования.

В настоящее время развиваются физические методы хранения водорода (в виде криогенной жидкости или сжатого газа) и химические или физико-химические методы (адсорбция, абсорбция, химическая реакция, например, образующая с водородом гидриды металлов (металлогидриды)).

Известны решения, использующие физические методы [Патент РФ №2498151, 2013 г.; Патент РФ №2346202, 2009 г.; Патент РФ №2440290, 2012 г.; Международная заявка WO 2008/019414, опубл. 21.02.2008 г. и др.], в которых предлагается аккумулировать водород под большим давлением (до нескольких тысяч атмосфер) в пучках микро(нано)капилляров или в микросферах.

Известны устройство и картридж для хранения сжатого газообразного водорода [Patent US 8167122]. Устройство для хранения сжатого газообразного водорода включает в себя герметичный корпус, имеющий выпускную трубу, присоединенную к корпусу и оборудованную регулируемым выпускным клапаном, устройство для выделения водорода, выполненное с возможностью регулируемого выделения (высвобождения) газообразного водорода. Внутри герметичного корпуса расположен картридж, выполненный с возможностью накопления и хранения сжатого газообразного водорода и включающий в себя кожух и сборную конструкцию из двух различных типов микроконтейнеров, размещенную в кожухе. Микроконтейнеры выбраны из, по меньшей мере, одного полого частично проницаемого для водорода микроцилиндра, имеющего закупоренные концы, и множества частично проницаемых для водорода полых микросфер. Микроконтейнеры одного типа отличаются от микроконтейнеров другого типа по скорости высвобождения водорода из микроконтейнеров.

Узел микроконтейнеров включает в себя первую часть, имеющую трубчатую форму, и вторую часть, имеющую цилиндрическую форму и расположенную внутри полости первой части. Согласно одному из вариантов осуществления изобретения, первая часть состоит из множества микроцилиндров, плотно упакованных и размещенных аксиально внутри первой части, а вторая часть включает в себя множество микросфер, плотно упакованных и заполняющих цилиндрический объем второй части.

Полые микроцилиндры могут быть изготовлены из материала, обладающего относительно невысокой проницаемостью по отношению к водороду при температуре ниже 20-30°C и более чем в 10 раз большей проницаемостью при температуре выше 70-90°C. Микросферы могут быть изготовлены из материала, обладающего относительно невысокой проницаемостью по отношению к водороду при температуре 50-70°C и более чем в 10 большей проницаемостью при температуре выше 200-250°C.

Картридж для накопления и хранения водорода может быть заполнен газообразным водородом путем помещения картриджа в условия с высокой температурой (200-500°C) и давлением (1-300 атм.) водорода (например, в автоклав).

Недостатком устройства является неравномерный прогрев микроконтейнеров в картридже, что не позволяет проводить программируемое выделение водорода. Изготовление картриджей, включая наводороживание методом Сиверта, трудоемко и малоэффективно, причем последнее возможно только при наличии специального оборудования в стационарных условиях. Конструкция устройства и картриджа не позволяет оперативной замены последнего. Кроме того, все физические методы недостаточно экономически эффективны, удобны и безопасны.

Известен накопитель водорода, в котором водород аккумулируется в массе алюмосиликата (галлуадия, halloysite), наносимого в виде монослоя на подложку, размещаемую (размещаемыми) в герметическом контейнере, а материалом подложки могут быть нержавеющая сталь или полимерные пленки [Patent US 7425232, Hydrogen storage apparatus comprised of halloysite]. В процессе наводороживания часть сорбирующего материала трансформируется в пустотелые стержни с различным аспектным отношением (диаметром около 20 нм и длиной 200÷500 нм), в которых содержится часть (1÷5) % находящегося в накопителе водорода. Для сепарации стержней из агломерата алюмосиликата используются различные методы (электростатические, центрифугальная, фильтровальная и др.), а для их нанесения на субстрат - электролитический способ.

Накопитель и способ его изготовления сложны в реализации и малоэффективны. Кроме того, как и все физические методы хранения водорода недостаточно экономически эффективен, удобен и безопасен.

Известно устройство "Контейнер для водорода и его изотопов и картридж для его снаряжения" [Патент РФ №2221290, 2004 г.], которое позволяет увеличить скорость поглощения и выделения водорода за счет снижения фильтрационного сопротивления. Устройство содержит корпус, внутри которого между цилиндрическими концентрично установленными обечайками размещены картриджи, имеющие газопроницаемый корпус, в который помещена смесь порошка сорбента для водорода и инертного к водороду и сорбенту порошка теплопроводного материала при объемной доле порошка теплопроводного материала от 0,3 до 0,5. Нагрев смеси порошка производится через поверхность внутренней обечайки.

Недостатком данного устройства является то, что сорбент для газов разбавлен материалом в объемной доле до 0,5, что значительно снижает важный для автономных и передвижных устройств хранения показатель - объемную долю аккумулируемого водорода. Кроме того, картриджи установлены таким образом, что их замена требует разборки всего устройства.

Известно устройство для хранения и транспортировки водорода (Патент РФ №2435098, 2011 г.). Устройство содержит корпус с водородной магистралью, в которой расположены аккумуляторы водорода, сорбционные элементы и электрические нагреватели, а также магистраль для подачи рабочей среды в виде коллектора, где в качестве рабочей среды используется теплоноситель или хладагент, при этом коллектор соединен с источниками рабочей среды с возможностью переключения теплоносителя на хладагент. Аккумуляторы водорода расположены в капсулах с газопроницаемыми оболочками, которые установлены на коллекторах коаксиально с возможностью их замены. Внутри капсул установлены теплопроводящие элементы, между которыми расположены аккумуляторы водорода.

В качестве аккумулятора водорода использованы микросферы и (или) интерметаллические сплавы, образующие с газом стабильные твердые соединения и (или) фуллерид лития. Нагреватели установлены вокруг капсул. Электрические нагреватели установлены с возможностью независимого регулирования температуры каждой капсулы. По внешней поверхности капсул могут быть установлены инфракрасные (ИК) излучатели.

При нагреве капсул из микросфер выделяется водород, который через пористую стенку капсулы поступает во внутреннюю полость бака (водородную магистраль) и отводится потребителю.

Недостатками устройства являются:

1) использование герметичных капсул (картриджей) с пористыми стенками, что существенно ограничивает как скорость выделения водорода в коллектор, так и эффективность наводороживания активных элементов капсул;

2) использование в качестве активных элементов капсул микросфер, дисперсных и пористых материалов и (или) интерметаллических сплавов, образующих с водородом стабильные твердые соединения, и (или) фуллеридов лития требует использования низкоэффективной технологии газового насыщения (метод Сиверта) водородом под большим давлением (до 300 атм.) с использованием специального оборудования в стационарных условиях, что существенно снижает экономическую эффективность использования устройства;

3) наличие внутри устройства многочисленных электрических и ИК-нагревателей, микросфер с водородом под большим давлением существенно снижает уровень безопасности эксплуатации устройства и увеличивает габариты.

Общим недостатком известных систем хранения водорода является высокая инерционность процесса освобождения водорода. С другой стороны, для эффективной работы автомобиля время старта освобождения водорода до достижения полного потока, а также времена переходных режимов (10-90% или 90-0%) не должны превышать 0,5 с.

Техническим результатом изобретения является устранение недостатков известных водородных аккумуляторов: уменьшение взрывоопасности в аварийных ситуациях, улучшение их эксплуатационно-технических и экономических характеристик.

Раскрытие изобретения

Указанный результат достигается тем, что в основу конструкции аккумулятора водорода положена концепция модульного выполнения накопителя водорода в виде системы аксиально расположенных легко заменяемых картриджей, содержащих водород в связанном состоянии в водородонасыщенном пленочном покрытии, наносимом на металлическую фольговую ленту, которая может быть свернута затем в спираль или другую форму с геометрией, обеспечивающей высокую степень компактирования, что способствует достижению высоких значений удельной плотности водорода в аккумуляторе. Из-за существенно меньшей энергии связи десорбция водорода происходит в пленочных покрытиях легче и при значительно более низких температурах (Tm~500K для Ti) по сравнению с монолитными металлами и сплавами (Tm~700K) [W. Lisowski et al., Decomposition of thin titanium deuteride films; thermal desorption kinetics studies combined with microstructure analysis //Appl. Surface Science, 254 (9), (2008) pp. 2629-2637] при одновременной возможности повышения степени насыщения [Е. Tal-

Gutelmacher et al., The effect of residual hydrogen on hydrogenation behaviour of Ti thin film // Scripta Materialia 62 (2010) pp. 709-712].

Для получения возможности использования режимов термодесорбции водорода с малой инерционностью в качестве материала фольги выбираются металлы или сплавы с высоким омическим сопротивлением, концы фольги соединены с контактами электронагрева фольги на металлическом торце картриджа, соединяемыми с регулируемым источником напряжения. В этом режиме термодесорбция водорода осуществляется омическим нагревом фольги с высоким сопротивлением. Режим электротермической десорбции водорода из покрытия обладает существенно меньшей инерционностью по сравнению с режимом нагрева внешней поверхности картриджа, что позволяет достигать длительность задержки от старта высвобождения водорода до достижения полного потока, а также времени переходных режимов (10-90% или 90-0%) ~0,1 с, что предоставляет новые возможности для программирования параметров выделения и хранения водорода. Для ограничения долговременной диффузии водорода в материал фольги на последнюю предварительно наносится водородный диффузионный барьер в виде покрытия из нитридов (например, TiN), или оксидов (например, TiO, Al2O3), или тонких пленок Al, или W, или Mo, или Ta, или Cr, или Nb. Диффузионный барьер наносится также на корпус картриджа и его элементы.

Краткое описание чертежей

Представленные графические материалы приведены исключительно в иллюстративных целях и не являются ограничивающими. Следует отметить, что фигуры, иллюстрирующие устройство согласно настоящему изобретению, приведены для ясности без соблюдения масштаба и пропорций.

На фиг. 1 изображено схематическое поперечное сечение цилиндрического варианта сменного картриджа для хранения водорода согласно настоящему изобретению. Картридж включает корпус 1 с размещенным внутри него активным элементом - фольговой металлической лентой с покрытием из наводороженного металла или композита, свернутой в спираль 2, торцевую фольговую заглушку 3, металлическую заглушку 4 с тонкостенным патрубком для вакуумирования 5 и контактами электронагрева фольги 6 для подключения концов фольги к источнику напряжения. Игла/нож 7 для вскрытия фольговой заглушки картриджа перед началом эксплуатации последнего является частью устройства для выделения водорода.

Материал корпуса картриджа - металл с хорошей теплопроводностью, например алюминий с покрытием в виде водородного диффузионного барьера, препятствующего долговременной диффузии водорода в материал.

На фиг. 2 представлен вариант выполнения накопителя водорода для цилиндрического корпуса аккумулятора. Элементы системы теплообмена (9) устройства выделения/заправки водорода образуют объемную матрицу для фиксации цилиндрических картриджей (8).

На фиг. 3 изображено схематическое поперечное сечение устройства для хранения водорода (аккумулятора) согласно настоящему изобретению. Устройство включает корпус 10, имеющий легкосъемную крышку 11, накопитель водорода 12, установленный в камере 10 при помощи крепежных элементов (не показаны), устройство выделения водорода 13, предохранительный клапан 14, порт для вакуумирования камеры/напуска водорода 15, датчик давления 16, регулятор расхода 17, расходомер 18, выпускной клапан 19.

Форма корпуса 10 может быть, например, цилиндрической. Однако может использоваться, по существу, любая требуемая форма. Корпус 10 может быть изготовлен из подходящего металла, пластмассы или композиционного материала с толщиной стенок, способной выдерживать напряжения в стенках, вызванные давлением газа внутри корпуса 10 в рабочем режиме (до ~10 атм.) и атмосферным давлением при предварительном вакуумировании.

Осуществление изобретения

Ключевым в осуществлении изобретения является использование активных элементов картриджей - водородонасыщенных пленочных покрытий, наносимых на подложку с помощью плазменных источников в среде водорода. Подложкой служит тонкая металлическая (например, нержавеющая сталь или металлы и сплавы с высоким омическим сопротивлением) лента из фольги с покрытием из оксидов или нитридов в качестве водородного диффузионного барьера, ограничивающего диффузию водорода из покрытия в подложку, свертываемая затем в спираль Архимеда с шагом, обеспечивающим зазор между соседними витками. Однако этим не ограничивается многообразие возможных форм ленты, выбираемых в соответствии с требованиями к форме и размерам картриджа и/или аккумулятора (например, пластины или "пчелиные соты" из правильных шестиугольников и др.).

Изготовленные таким способом водородонасыщенные ленты заправляются в аксиально расположенные цилиндрические картриджи (фиг. 1) и фиксируются (например, спиралеобразными направляющими в торцевых частях картриджа). Спиралевидная геометрия рулона фольги способствует снижению деформации фольги при термодесорбции водорода за счет компенсации напряжений на свободных (не закрепленных) участках фольги. Материал корпуса картриджа - металл с высокой теплопроводностью (например, Al), покрытый с обеих сторон водородными диффузионными барьерами. Одна из вакуумплотных торцевых заглушек выполнена из фольги (например, из нержавеющей стали с покрытием - водородным диффузионным барьером). Герметизация обеспечивается микросваркой либо запрессовкой.

Другая вакуумплотная торцевая заглушка имеет тонкостенный патрубок для вакуумирования картриджа после его изготовления и контакты электронагрева фольги для соединения концов фольги с источником напряжения при электрическом нагреве фольги из сплавов с высоким сопротивлением. После вакуумирования картриджа его герметизация осуществляется спрессовыванием трубки. Изготовленные таким способом картриджи могут храниться в нормальных условиях без ограничения времени [Б.П. Тарасов и др., Проблемы хранения водорода и перспективы использования гидридов для аккумулирования водорода // Российский химич. журнал (2006), т. L, №6].

После открытия легкосъемного фланца аккумулятора картриджи вставляют в объемную механическую структуру фиксации картриджей, образованную системой теплообменных элементов (каналов) с геометрией пчелиных сот (фиг. 2), камера герметизируется и проводится форвакуумная откачка воздуха, используя специальный порт 15 (фиг. 3) с целью минимизации примесей в десорбированном водороде. После этого приводится в действие система игл/ножей устройства выделения водорода для вскрытия фольговых торцевых заглушек картриджей и включается программированный прогрев картриджей теплоносителем через теплообменные элементы и/или для переходных режимов с высокой скоростью изменения потока водорода, электроподогрев фольги пропусканием через нее тока с программируемой величиной.

Управление манипуляциями (вакуумирование, вскрытие картриджей, программируемый нагрев картриджей системой теплообмена или электроподогрева для осуществления программируемой термодесорбции водорода из активных элементов картриджей или охлаждение картриджей при заправке водородом под давлением, регулировка потока газа на выходе) при использовании аккумулятора производится с помощью системы управления (на фиг.3 не показана) на основе данных с датчиков температуры картриджей, давления в камере, расходомера, размещенных в камере. Подача водорода пользователю при заданном потоке и ее прекращение осуществляется с помощью выпускного клапана 19 (фиг. 3).

При необходимости оперативной замены одного, нескольких или всех картриджей давление в камере приводится к атмосферному путем открытия предохранительного клапана 14 (фиг. 3), открывается легкосъемная крышка 11 (фиг. 3) и производится замена. Такая возможность существенно увеличивает автономность использования аккумулятора при недоступности традиционной заправки напуском водорода под давлением, а также повышает удобство в эксплуатации и обслуживании.

Вариант заправки (дозаправки) водородом накопителя после его полной или частичной выработки требует только программированного инвертирования режима системы теплообмена картриджей (переключение рабочей среды системы с теплоносителя на хладагент), т.е. переход в режим охлаждения при насыщении картриджей путем напуска водорода под давлением через порт 15 (фиг. 3).

Т.о. положительными эффектами использования устройства для хранения водорода (аккумулятора) являются устранение взрывоопасности в аварийных ситуациях, повышение объемной плотности водорода в накопителе и улучшение его эксплуатационно-технических характеристик, в том числе минимизация времени переходных режимов выделения водорода до 0,1 с. Возможность контроля давления десорбируемого водорода программированием электротермического воздействия на сорбирующие элементы картриджей предоставляет возможность минимизации уровня давления в накопителе при поставке водорода потребителю.

Хранение водорода в связанном состоянии в водородонасыщенном пленочном покрытии, наносимом на металлическую фольговую ленту, способствует достижению высоких значений удельной плотности водорода в аккумуляторе.

Конструкция аккумулятора позволяет оперативную заправку (запасными картриджами) и дозаправку (как в виде замены картриджей, так и насыщения накопителя водородом под давлением). Экономическая эффективность изготовления активных элементов картриджей позволяет их одноразовое использование с последующей утилизацией.


АККУМУЛЯТОР ДЛЯ ХРАНЕНИЯ ВОДОРОДА В СВЯЗАННОМ СОСТОЯНИИ И КАРТРИДЖ ДЛЯ АККУМУЛЯТОРА
АККУМУЛЯТОР ДЛЯ ХРАНЕНИЯ ВОДОРОДА В СВЯЗАННОМ СОСТОЯНИИ И КАРТРИДЖ ДЛЯ АККУМУЛЯТОРА
АККУМУЛЯТОР ДЛЯ ХРАНЕНИЯ ВОДОРОДА В СВЯЗАННОМ СОСТОЯНИИ И КАРТРИДЖ ДЛЯ АККУМУЛЯТОРА
АККУМУЛЯТОР ДЛЯ ХРАНЕНИЯ ВОДОРОДА В СВЯЗАННОМ СОСТОЯНИИ И КАРТРИДЖ ДЛЯ АККУМУЛЯТОРА
Источник поступления информации: Роспатент

Показаны записи 1-8 из 8.
27.03.2013
№216.012.313b

Способ модификации поверхности материала плазменной обработкой

Изобретение относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов, а также изготовленных из данных материалов изделий за счет модификации их поверхности плазмой в вакууме. Способ включает загрузку материала в камеру, вакуумную откачку...
Тип: Изобретение
Номер охранного документа: 0002478141
Дата охранного документа: 27.03.2013
27.06.2013
№216.012.50d0

Способ поверхностной модификации конструкционных материалов и изделий

Способ относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов и изделий, в частности к способу электровзрывного легирования. Способ включает импульсное облучение обрабатываемой поверхности ионным компонентом плазменной струи, в качестве...
Тип: Изобретение
Номер охранного документа: 0002486281
Дата охранного документа: 27.06.2013
20.08.2014
№216.012.ec6e

Устройство для нанесения покрытий путем электрического взрыва фольги (варианты)

Группа изобретений относится к нанесению покрытий. Устройство по варианту 1 содержит два коаксиально размещенных электрода и цилиндрический межэлектродный изолятор. Торец центрального электрода заглублен относительно торца внешнего электрода с образованием канала для плазменного потока, на...
Тип: Изобретение
Номер охранного документа: 0002526334
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.4085

Плазменный источник проникающего излучения

Изобретение относится к плазменной технике, в частности к электроразрядным устройствам типа “плазменный фокус”, и может быть использовано в качестве генератора разовых импульсов рентгеновского и нейтронного излучений для исследовательских и прикладных задач. Устройство содержит газоразрядную...
Тип: Изобретение
Номер охранного документа: 0002548005
Дата охранного документа: 10.04.2015
12.01.2017
№217.015.5992

Источник ионов для нейтронной трубки

Изобретение относится к устройствам для генерации плазмы, конкретно к электроразрядным импульсным источникам ионов плазмы для работы в составе вакуумных нейтронных трубок, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например в импульсных генераторах...
Тип: Изобретение
Номер охранного документа: 0002588263
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.7e59

Способ изготовления электродов вакуумной нейтронной трубки

Изобретение относится к способу изготовления электродов для вакуумных нейтронных трубок (ВНТ) и может быть использовано в ускорительной технике, в геофизическом приборостроении, например в импульсных генераторах нейтронов, предназначенных для исследования скважин методами импульсного...
Тип: Изобретение
Номер охранного документа: 0002601293
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8182

Универсальная нейтронная трубка с электротермическими инжекторами рабочего газа

Изобретение относится к вакуумным и газонаполненным нейтронным трубкам и может быть использовано, например, в нейтронных трубках, предназначенных для исследования скважин методами нейтронного каротажа. Указанные результаты достигаются тем, что источник ионов выполнен на основе комбинированного...
Тип: Изобретение
Номер охранного документа: 0002601961
Дата охранного документа: 10.11.2016
04.04.2018
№218.016.3727

Способ и мобильное устройство для утилизации метана из неконтролируемых источников

Изобретение относится к способу утилизации метана из неконтролируемых источников, включающему предварительную очистку и выделение метана из метановоздушной смеси селективной абсорбцией, разложение метана в электрическом разряде на водород и ацетилен, выделение водорода из газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002646607
Дата охранного документа: 06.03.2018
Показаны записи 1-10 из 10.
27.03.2013
№216.012.313b

Способ модификации поверхности материала плазменной обработкой

Изобретение относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов, а также изготовленных из данных материалов изделий за счет модификации их поверхности плазмой в вакууме. Способ включает загрузку материала в камеру, вакуумную откачку...
Тип: Изобретение
Номер охранного документа: 0002478141
Дата охранного документа: 27.03.2013
27.06.2013
№216.012.50d0

Способ поверхностной модификации конструкционных материалов и изделий

Способ относится к области пучково-плазменных технологий улучшения эксплуатационных свойств конструкционных материалов и изделий, в частности к способу электровзрывного легирования. Способ включает импульсное облучение обрабатываемой поверхности ионным компонентом плазменной струи, в качестве...
Тип: Изобретение
Номер охранного документа: 0002486281
Дата охранного документа: 27.06.2013
20.08.2014
№216.012.ec6e

Устройство для нанесения покрытий путем электрического взрыва фольги (варианты)

Группа изобретений относится к нанесению покрытий. Устройство по варианту 1 содержит два коаксиально размещенных электрода и цилиндрический межэлектродный изолятор. Торец центрального электрода заглублен относительно торца внешнего электрода с образованием канала для плазменного потока, на...
Тип: Изобретение
Номер охранного документа: 0002526334
Дата охранного документа: 20.08.2014
10.04.2015
№216.013.4085

Плазменный источник проникающего излучения

Изобретение относится к плазменной технике, в частности к электроразрядным устройствам типа “плазменный фокус”, и может быть использовано в качестве генератора разовых импульсов рентгеновского и нейтронного излучений для исследовательских и прикладных задач. Устройство содержит газоразрядную...
Тип: Изобретение
Номер охранного документа: 0002548005
Дата охранного документа: 10.04.2015
12.01.2017
№217.015.5992

Источник ионов для нейтронной трубки

Изобретение относится к устройствам для генерации плазмы, конкретно к электроразрядным импульсным источникам ионов плазмы для работы в составе вакуумных нейтронных трубок, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например в импульсных генераторах...
Тип: Изобретение
Номер охранного документа: 0002588263
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.7e59

Способ изготовления электродов вакуумной нейтронной трубки

Изобретение относится к способу изготовления электродов для вакуумных нейтронных трубок (ВНТ) и может быть использовано в ускорительной технике, в геофизическом приборостроении, например в импульсных генераторах нейтронов, предназначенных для исследования скважин методами импульсного...
Тип: Изобретение
Номер охранного документа: 0002601293
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8182

Универсальная нейтронная трубка с электротермическими инжекторами рабочего газа

Изобретение относится к вакуумным и газонаполненным нейтронным трубкам и может быть использовано, например, в нейтронных трубках, предназначенных для исследования скважин методами нейтронного каротажа. Указанные результаты достигаются тем, что источник ионов выполнен на основе комбинированного...
Тип: Изобретение
Номер охранного документа: 0002601961
Дата охранного документа: 10.11.2016
04.04.2018
№218.016.3727

Способ и мобильное устройство для утилизации метана из неконтролируемых источников

Изобретение относится к способу утилизации метана из неконтролируемых источников, включающему предварительную очистку и выделение метана из метановоздушной смеси селективной абсорбцией, разложение метана в электрическом разряде на водород и ацетилен, выделение водорода из газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002646607
Дата охранного документа: 06.03.2018
29.05.2019
№219.017.6616

Способ получения осажденных на носителе наночастиц металла или полупроводника

Изобретение относится к способам получения наночастиц и может быть использовано при осуществлении процессов нанесения высокоэффективных каталитических нанопокрытий. Способ включает расплавление и диспергирование расплавленного материала, подачу полученных жидких капель этого материала в плазму,...
Тип: Изобретение
Номер охранного документа: 0002380195
Дата охранного документа: 27.01.2010
10.07.2019
№219.017.a9bf

Способ и устройство для выделения водорода из метана

Изобретение относится к технологиям модификации и разделения газов и может быть использовано для выделения водорода из водородосодержащих газовых смесей при плазменном разложении метана (метаносодержащих газов). Способ включает разложение метана в электрическом разряде и выделение водорода из...
Тип: Изобретение
Номер охранного документа: 0002694033
Дата охранного документа: 08.07.2019
+ добавить свой РИД