×
25.08.2017
217.015.9f10

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов. Сущность способа заключается в том, что получают изображения исследуемой поверхности с высоким разрешением средствами атомно-силовой микроскопии, вычисляют с помощью метода средней взаимной информации характеристики поверхности, классифицируют исследуемую поверхность по величине энтропии и степени упорядоченности. 1 ил.

Изобретение относится к областям микро- и наноэлектроники, физики поверхности и может быть использовано для исследования информационных характеристик поверхности наноструктурированных и самоорганизующихся твердотельных материалов (полупроводниковых, органических и др.).

Известны основные параметры для анализа шероховатости и рельефа поверхности по данным атомно-силовой микроскопии (ACM) [1, 2]. В них входят метрические (амплитудные, функциональные и пространственные) и фрактальные параметры, используемые передовыми фирмами для сертификации поверхности. Следует отметить, что метрические параметры базируются в основном на среднестатистических функциях расчета характеристик шероховатости и рельефа поверхности. Зачастую они позволяют информативно исследовать упорядоченные структуры, но при изучении процессов самоорганизации в неупорядоченных средах являются малоинформативными. Фрактальные параметры, в частности фрактальная размерность, позволяют более полно изучить поверхность с точки зрения ростовых механизмов материала и процессов самоорганизации, поскольку оперируют с различными пространственными масштабами исследуемой поверхности. Данная группа параметров основана на свойствах самоаффинности и самоподобии фракталов. Но не все поверхности обладают такими свойствами: зачастую исследуются сложные гетерогенные системы, например обладающие совокупностью кристаллической и неупорядоченной фаз. Предлагаемый способ исследования информационной емкости поверхности наноструктурированных и самоорганизующихся материалов наиболее близок к группе фрактальных параметров.

В основе предлагаемого способа лежит теория информации. Метод средней взаимной информации (СВИ) [3] позволяет исследовать процессы самоорганизации структурообразования материалов по оценке степени упорядоченности структуры поверхности [4].

Самоорганизующиеся материалы обладают определенными структурными элементами, а значит и определенным рельефом поверхности. По сути, рельеф поверхности можно рассматривать в качестве среды, способной к хранению информации. Примеров информационных сред, где требуются исследования характеристик поверхности, достаточно много. Структуры с квантовыми точками (КТ) - перспективные материалы в области опто-, микро- и наноэлектроники. Предлагалось использовать их как основу при создании логических элементов, квантовых компьютеров. Но реализовать это практически в масштабах крупного производства пока не удалось. Причины этого могут быть связаны с наличием неполных знаний о физике процессов взаимодействия квантово-размерных объектов, технологическими проблемами получения строго упорядоченных массивов КТ и др. Другой представляющий интерес для исследования объект - наноструктурированные материалы, например полупроводниковые нанокристаллы в матрице неупорядоченного материала. Наличие фаз различной проводимости может использоваться для использования таких структур также в качестве информационных сред.

При реализации способа исследования информационной емкости поверхности наноструктурированных и самоорганизующихся материалов необходимо наличие максимально точных данных о рельефе исследуемой поверхности. Изображение поверхности в высоком качестве может быть получено с помощью атомно-силового микроскопа.

По данным о рельефе поверхности для каждой пары точек высот производится расчет взаимной информации. Взаимная информация определяется как количество информации, которое становится известным относительно случайной функции в точке A, когда становится известным ее значение в точке B. Если D - область определения, Z - область случайной функции, PA(z1) - плотность распределения вероятностей в точке A (как функция на z1), PB(z2) - плотность распределения вероятностей в точке B (как функция на z2), PAB(z1, z2) - совместная плотность распределения в точках A и B, то взаимная информация IAB(z1,z2) для пары известного и предсказываемого значения рассчитывается по следующей формуле:

СВИ определяется как среднее ожидаемое значение взаимной информации для заданной пары точек путем интегрирования по Z2:

В результате таких расчетов получают распределение взаимной информации в соответствии с размером исходного изображения поверхности. По полученному распределению находят величины минимальной, средней и максимальной взаимной информации. СВИ характеризует упорядоченность поверхности: чем больше значение СВИ, тем более упорядоченная структура. Максимальная взаимная информация (МВИ) характеризует энтропию поверхности. Среднюю энтропию рассчитывают по формуле:

где p(x) - вероятность наличия одной из высот в точке x, N - количество точек высот исследуемой поверхности.

Поскольку рельеф поверхности в заявляемом способе рассматривается в качестве среды, имеющей функциональные возможности хранения информации, то поверхности с более развитым рельефом (т.е. с большей величиной энтропии) способны к хранению большего объема информации. В этой связи энтропию исследуемой поверхности можно считать информационной емкостью поверхности. Таким образом, чем выше МВИ, тем выше информационная емкость.

Диапазон допустимых значений взаимной информации от 0 до 1, размерность информации - биты. Иными словами, значения взаимной информации меняются от нуля до максимальной средней энтропии полного хаоса.

Если высота точек профиля поверхности, полученных атомно-силовым микроскопом, находится в диапазоне [К; L], то можно разбить его, например, на 28=256 интервалов, а высоту в каждой точке округлить до середины интервала. После такой процедуры квантования энтропия и информация становится конечными измеримыми величинами. Максимальная энтропия системы из одной точки равна логарифму от числа состояний, в данном случае 8 бит, этому же равна взаимная информация в случае, когда до измерения величина была полностью не определена, а после - определена однозначно. Выбранная дискретность квантования является компромиссом между огрублением результата, вызванным малым числом уровней, и сложностью вычислений. Для устранения произвольности этого выбора все величины, имеющие размерность информации, нормируются по максимальной энтропии системы и для одной точки в данном случае делятся на 8. После нормализации значение энтропии системы обретает физический смысл и изменяется от нуля (состояние известно) до единицы (состояние полного хаоса с равновероятными состояниями). Взаимная информация также изменяется от нуля (известность одной величины ничего не сообщает о значении другой) до единицы (значение было полностью неопределенным, а теперь точно известно).

Иная ситуация для искусственных модельных поверхностей. Рассмотрим двумерную поверхность из N×N прямоугольных столбиков. Заметим, что высоты принимают всего 2 возможных значения из 256, вероятности которых относятся как 1:3. Тогда средняя энтропия такой системы Em для скважности 2 согласно формуле (3) определяется:

.

Полученное значение энтропии существенно меньше энтропии полного хаоса, которая равна 8. Поэтому максимальная взаимная информация в такой системе при данной нормировке хаосом не может превышать 0.1. При скважности, равной 4, взаимная информация еще ниже, не более 0.04.

Физический смысл этого эффекта в том, что величина максимальной взаимной информации - это не степень упорядоченности системы, а оценка той ее части, которая обусловлена корреляцией значений высот профиля в разных точках. Поэтому если система и так существенно определена, то информация, полученная от известных значений в других точках, не велика.

Применение заявляемого способа при исследовании материалов и структур микро- и наноэлектроники позволит более детально изучать процессы самоорганизации структурообразования, что необходимо для решения обратной задачи - создания наноструктур и наноматериалов с заданными свойствами.

Сравнительный анализ с прототипом показывает, что заявляемый способ позволяет производить оценку поверхности наноструктурированных материалов с помощью нового, не имеющегося в прототипе, параметра - информационной емкости. Следовательно, изобретение обладает существенными отличиями.

Таким образом, заявляемый способ соответствует критерию изобретения «новизна», так как в известных источниках не обнаружен предложенный способ исследования информационной емкости поверхности наноструктурированных материалов.

Основные этапы реализации способа исследования информационной емкости поверхности самоорганизующихся структур поясняются фиг. 1.

На первом этапе (фиг. 1, а) получают изображения исследуемой поверхности (обладающей функциональными возможностями хранения информации) с высоким разрешением средствами атомно-силовой микроскопии. Далее (фиг. 1, б) с помощью метода средней взаимной информации получают распределение взаимной информации в соответствии с размерами исследуемого участка, по которому определяют характеристики поверхности (среднюю и максимальную взаимную информацию). На последнем этапе (фиг. 1, в) классифицируют исследуемую поверхность по величине энтропии (характеризующую ее информационную емкость) и степени упорядоченности.

Литература

[1] Арутюнов П.А., Толстихина А.Л., Демидов В.Н. Система параметров для анализа шероховатости и микрорельефа поверхности материалов в сканирующей зондовой микроскопии // Заводская лаборатория. Диагностика материалов. 1998. Т. 65, №9. С. 27-37.

[2] Мошников В.А., Спивак Ю.М., Алексеев П.А., Пермяков Н.В. Атомно-силовая микроскопия для исследования наноструктурированных материалов и приборных структур: учеб. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2014. 144 с.

[3] Henry D.I. Abarbanel, Reggie Brown, John J. Sidorowich, and Lev Sh. Tsimring The analysis of observed chaotic data in physical systems // Rev. Mod. Phys. 65, 1331 (1993).

[4] Вихров С.П., Авачева Т.Г., Бодягин Н.В., Гришанкина Н.В., Авачев А.П. Установление степени упорядочения структуры материалов на основе расчета информационно-корреляционных характеристик // Физика и техника полупроводников, т. 46, вып. 4, 2012 г. С. 433-438.


СПОСОБ ИССЛЕДОВАНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ
СПОСОБ ИССЛЕДОВАНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ
СПОСОБ ИССЛЕДОВАНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ
СПОСОБ ИССЛЕДОВАНИЯ ИНФОРМАЦИОННОЙ ЕМКОСТИ ПОВЕРХНОСТИ НАНОСТРУКТУРИРОВАННЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 94.
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97f8

Фазометр когерентно-импульсных радиосигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002609438
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.abf1

Электровакуумный прибор свч

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное...
Тип: Изобретение
Номер охранного документа: 0002612028
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b03d

Способ развертки спектров масс линейной ионной ловушкой с дипольным возбуждением

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения конструктивных и коммерческих параметров ионных ловушек с дипольным возбуждением ионов. Технический результат - упрощение системы развертки масс и высокочастотного питания...
Тип: Изобретение
Номер охранного документа: 0002613347
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b1d7

Вычислитель радиальной скорости движущегося объекта

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа радиальной скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002613037
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b958

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей и атомно-силовой микроскопии. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002615052
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba8b

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой соединена с магнитопрозрачной...
Тип: Изобретение
Номер охранного документа: 0002615708
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.c554

Способ времяпролетного масс-разделения ионов в радиочастотном линейном электрическом поле и устройство для его осуществления

Изобретение относится к области масс-спектрометрии и направлено на совершенствование методов и устройств масс-разделения по времени пролета в линейных высокочастотных полях. Технический результат - повышение разрешающей способности и решение проблемы конструктивного совмещения устройств ввода и...
Тип: Изобретение
Номер охранного документа: 0002618212
Дата охранного документа: 03.05.2017
Показаны записи 81-90 из 100.
13.01.2017
№217.015.7901

Способ изготовления электродов электронных приборов

Изобретение относится к технологии получения материалов, поверхность которых обладает стабильными электрофизическими свойствами, в частности электродов газоразрядных и электровакуумных приборов (холодных катодов газоразрядных лазеров, контакт-деталей герконов, электродов масс-спектрометров и...
Тип: Изобретение
Номер охранного документа: 0002599389
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7c6b

Обнаружитель-измеритель когерентно-импульсных радиосигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных неэквидистантных радиосигналов и измерения радиальной скорости движущегося объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости...
Тип: Изобретение
Номер охранного документа: 0002600111
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7e97

Устройство измерения потенциала поверхности диэлектрических покрытий

Изобретение относится к методам исследования электрофизических свойств диэлектрических покрытий и может быть использовано, в частности, для изучения электронно-индуцированных процессов зарядки, накопления и кинетики зарядов в диэлектриках. Устройство содержит неподвижный измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002601248
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8c66

Способ и устройство определения температурных характеристик антиэмиссионных материалов

Изобретение относится к электронной промышленности, области тонкопленочных технологий, нанесения и контроля пленочных покрытий с заданными характеристиками для эмиссионной электроники. Технический результат - повышение достоверности и информативности измерений. Определяется содержание атомов...
Тип: Изобретение
Номер охранного документа: 0002604836
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8d73

Способ восстановления изображений при неизвестной аппаратной функции

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение...
Тип: Изобретение
Номер охранного документа: 0002604720
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.97f8

Фазометр когерентно-импульсных радиосигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002609438
Дата охранного документа: 01.02.2017
25.08.2017
№217.015.abf1

Электровакуумный прибор свч

Изобретение относится к электронной технике, а именно к электровакуумным двухрезонаторным генераторам СВЧ клистронного типа с двухзазорным первым резонатором. Первый резонатор обеспечивает самовозбуждение генератора в режиме автогенерации на противофазном виде колебаний и достаточно эффективное...
Тип: Изобретение
Номер охранного документа: 0002612028
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b03d

Способ развертки спектров масс линейной ионной ловушкой с дипольным возбуждением

Изобретение относится к области масс-спектрометрического анализа вещества и может быть использовано для улучшения конструктивных и коммерческих параметров ионных ловушек с дипольным возбуждением ионов. Технический результат - упрощение системы развертки масс и высокочастотного питания...
Тип: Изобретение
Номер охранного документа: 0002613347
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b1d7

Вычислитель радиальной скорости движущегося объекта

Изобретение относится к вычислительной технике и предназначено для вычисления на основе корреляционного принципа радиальной скорости движущегося объекта; может использоваться в автоматизированных системах управления воздушным движением для обнаружения и измерения скорости летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002613037
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b958

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей и атомно-силовой микроскопии. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных...
Тип: Изобретение
Номер охранного документа: 0002615052
Дата охранного документа: 03.04.2017
+ добавить свой РИД