×
25.08.2017
217.015.9d4d

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики. Способ работы газотурбинной установки, включающей дополнительный контур с низкокипящим рабочим телом, включающий входное устройство, сообщенное с источником низкокипящего рабочего тела, теплообменный аппарат, турбину, сообщенную с дополнительным приводом. Рабочее тело-воздух первого контура после входного устройства охлаждают в первом теплообменном аппарате, далее после сжатия в компрессоре низкого давления и последующего охлаждения рабочего тела во втором теплообменном аппарате, рабочее тело расширяют до отрицательной температуры в турбодетандере и охлаждают в расположенном за ним третьем теплообменном аппарате, после сжатия в компрессоре высокого давления, горения в камере сгорания, расширения в турбинах высокого, низкого давлений, в силовой турбине и вращения привода потребителя отработавшие газы основного контура направляют в теплообменный аппарат дополнительного контура, куда одновременно подают низкокипящее рабочее тело, подогревают его отработавшими газами основного контура для срабатывания теплоперепада в турбине дополнительного контура, после чего низкокипящее рабочее тело из-за турбины подают в вышеупомянутый третий теплообменный аппарат перед компрессором высокого давления основного контура и далее в циркуляционный насос, где низкокипящее рабочее тело сжимается, и в жидком состоянии его подают для охлаждения рабочего тела-воздуха в теплообменные аппараты основного контура. Позволяет повысить КПД установки и увеличить полезную работу цикла. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и, в частности, к способам повышения эффективности работы газотурбинных установок.

Известен способ работы газотурбинной установки (ГТУ), в которой воздух из атмосферы поступает в компрессор, где сжимается. Поток сжатого воздуха подается в камеру сгорания, где подводится топливо и воспламеняется горючая смесь. Затем отработавшие газы с высоким давлением подаются в проточную часть газовой турбины. В газовой турбине газ расширяется практически до атмосферного давления (Рн) и поступает в выходной диффузор.

Показатели стационарных ГТУ простого цикла (мощность 300 МВт, эффективный коэффициент полезного действия составляет (КПД) 40%)) достигнуты за счет выбора высокой начальной температуры газа (до 1400…1500 К) и степени повышения давления, соответствующей наибольшей удельной работе цикла.

Недостатками данной схемы является то, что возможность дальнейшего роста начальной температуры газа как главного фактора повышения эффективности ГТУ невозможна за счет ограничения жаростойкости и жаропрочности материалов установки.

Известны следующие направления повышения эффективности ГТУ: усложнение рабочего цикла двигателя за счет введения в тепловую схему промежуточного охлаждения (ПО) воздуха между каскадами компрессоров, промежуточного подогрева (ПП) газа между турбинами по отдельности или ПО и ПП вместе, а также нетрадиционного способа - применение турбины перерасширения (обращенный газогенератор) и использование низкопотенциальной энергии промышленных предприятий (Матвеенко В.Т. Перспективы повышения эффективности высокотемпературного газотурбинного двигателя усложнением цикла Брайтона / В.Т. Матвеенко // Вестник СевГТУ; Вып. 97. - Севастополь, 2009. - С. 113).

Наиболее близким по технической сущности и достигаемому результату и принятым за прототип является способ работы ГТУ, которая включает входное устройство, куда поступает воздух из атмосферы, компрессор низкого давления, где происходит процесс сжатия воздуха. Далее воздух поступает в теплообменный аппарат, понижая температуру рабочего тела, затем подается в компрессор высокого давления для повышения давления. Поток сжатого охлажденного воздуха поступает в камеру сгорания, где происходит процесс горения. Затем отработавшие газы с высоким давлением подаются в проточную часть газовой турбины высокого давления. В газовой турбине рабочие газы расширяются и снова подаются в камеру сгорания для сжигания остатков горючей смеси после первичного процесса горения. Рабочее тело снова поступает в турбину низкого давления для срабатывания теплоперепада и подается в силовую турбину, вращая электрогенератор (Матвеенко В.Т. Перспективы повышения эффективности высокотемпературного газотурбинного двигателя усложнением цикла Брайтона / В.Т. Матвеенко // Вестник СевГТУ: Вып. 97. - Севастополь, 2009. - С. 114-115).

Газотурбинные установки с промежуточным охлаждением воздуха и промежуточным подогревом газа обладают рядом преимуществ:

- уменьшением капиталовложений в расчете на 1 кВт/ч установленной мощности по отношению к аналогичным показателям ТЭС и ПТУ;

- меньшим (в 2-8 раза) выбросам в атмосферу оксидов азота;

- максимальным использованием кинетической энергии газов в процессе вторичного горения.

К недостаткам рассматриваемой схемы ГТУ следует отнести:

- отсутствие регенерации выходящих газов;

- затраты на подготовку рабочего тела для охлаждения и выбросов;

- увеличение расхода топлива в ходе подвода тепла во вторичной камере сгорания;

- недостаточно высокий КПД по сравнению с ГТУ и контуром низкокипящей жидкости.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении КПД установки и увеличении полезной работы цикла.

Технический результат достигается тем, что в способе работы газотурбинной установки, включающем забор рабочего тела-воздуха из атмосферы во входное устройство, сжатие в компрессоре низкого давления, охлаждение рабочего тела-воздуха в теплообменном аппарате, сжатие в компрессоре высокого давления, подвод тепла в камеру сгорания, расширение в турбине и вращение привода потребителя, новым является то, что введен дополнительный контур с низкокипящим рабочим телом, включающий входное устройство, сообщенное с источником низкокипящего рабочего тела, теплообменный аппарат, турбину, сообщенную с дополнительным приводом. Рабочее тело-воздух первого контура после входного устройства охлаждают в первом теплообменном аппарате, далее после сжатия в компрессоре низкого давления и последующего охлаждения рабочего тела во втором теплообменном аппарате рабочее тело расширяют до отрицательной температуры в турбодетандере и охлаждают в расположенном за ним третьем теплообменном аппарате, после сжатия в компрессоре высокого давления, горения в камере сгорания, расширения в турбинах высокого, низкого давлений, в силовой турбине, отработавшие газы основного контура направляют в теплообменный аппарат дополнительного контура, куда одновременно подают низкокипящее рабочее тело, подогревают его для срабатывания теплоперепада в турбине дополнительного контура, после чего низкокипящее рабочее тело из-за турбины подают в вышеупомянутый третий теплообменный аппарат перед компрессором высокого давления основного контура и далее в циркуляционный насос, где низкокипящее рабочее тело сжимается и в жидком состоянии его подают для охлаждения рабочего тела-воздуха в теплообменных аппаратах основного контура.

В качестве низкокипящего рабочего тела используют пропан.

Низкокипящее рабочее тело подогревают в теплообменном аппарате дополнительного контура до температуры, не превышающей температуру самовоспламенения.

На чертеже представлена схема газотурбинной установки.

Основной контур конструктивно представляет собой тепловой насос, который состоит из входного устройства 1, двух теплообменных аппаратов 2, 4, компрессора 3 и турбодетандера 5. Далее по тракту расположены теплообменный аппарат 6 и газогенератор. Газогенератор состоит из компрессора высокого давления 7, камеры сгорания 8, турбины высокого давления 9, турбины низкого давления 10, силовой (свободной) турбины 11, выходного устройства 12 и электрогенератора 13. Газогенератор представляет собой типичный одновальный газотурбинный двигатель наземного применения.

Дополнительный контур состоит из входного устройства 14, магистрали трубопроводов рабочего тела (пропан C3H8), теплообменного аппарата 15, пропановой турбины 16, электрогенератора 17 и циркуляционного насоса 18.

Принцип работы установки заключается в следующем.

Воздух из атмосферы через воздухозаборник 1 поступает в теплообменный аппарат 2, охлаждаясь в нем, затем поступает в компрессор 3. Воздух в компрессоре сжимается, и с повышенным давлением подается в теплообменный аппарат 4, снова охлаждаясь в нем. В турбодетандере 5 рабочее тело расширяется до отрицательной температуры и поступает в теплообменный аппарат 6 для поддержания заданной температуры рабочего тела перед компрессором высокого давления 7 газогенератора. В компрессоре 7 воздух сжимается и подается в камеру сгорания 8. В камере сгорания происходит процесс подвода тепла, далее газ поступает на турбину высокого давления 9 и турбину низкого давления 10, силовую турбину 11, расширяясь в них, приводит во вращение компрессоры 7, 3 и электрогенератор 13. Далее из выходного устройства 12 отработавшие газы поступают в теплообменный аппарат 15 для подогрева низкокипящего тела дополнительного контура. Далее в теплообменнике 15 низкокипящее тело подогревается за счет выхлопных газов основного контура до положительной температуры, не превышающей температуру самовоспламенения, и поступает на пропановую турбину 16, где расширяется до границы перехода в жидкое состояние, при этом вырабатывая значительную мощность и вращая электрогенератор 17 (Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. Изд. Второе. М., 1972. С. 235). Затем газ из пропановой турбины 16 поступает в теплообменник 6 основного контура, охлаждаясь в нем, подается в циркуляционный насос 18, где газ сжимается и переходит в жидкое состояние (то же, с. 236). Далее по тракту сжиженный газ поступает в теплообменники 4 и 2 основного контура для отвода тепла в основном контуре установки и снижения работы компрессора, тем самым повышая работу цикла. Газ в дополнительный контур подается через входное устройство 14. Далее цикл повторяется.

Процесс настроен таким образом, что в пропановой турбине не происходит конденсации (перехода в жидкое состояние) низкокипящего рабочего тела в ходе срабатывания теплоперепада. В дополнительном контуре в роли рабочего тела используется пропан C3H8 или другое низкокипящее вещество, имеющее достаточно высокое давление насыщенных паров при низких температурах. Пропан используется, как газ, для получения полезной работы и, как жидкость, для ступенчатого отвода тепла в ГТУ.

Преимущества данной схемы:

- достигается высокий КПД установки за счет введения дополнительного контура с низкокипящим рабочим телом;

- значительно увеличивается мощность путем охлаждения воздуха в теплообменных аппаратах и снижения работы сжатия в компрессорах;

- низкокипящее рабочее тело используют в качестве охладителя и газа в ходе его химического преобразования по тракту установки;

- низкий расход топлива за счет входа холодного воздуха в компрессор газогенератора;

- увеличиваются эксплуатационный ресурс работы и жизненный цикл установки;

- возможность эксплуатации в южных районах без понижения номинальной мощности.


СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ
СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 68.
10.04.2014
№216.012.b412

Теплообменник-реактор

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами. Теплообменник-реактор содержит корпус (1) в форме усеченного конуса с днищами (2) и (3),...
Тип: Изобретение
Номер охранного документа: 0002511815
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c58f

Способ изготовления конусообразных труб для теплообменных аппаратов и устройство для его осуществления

Изобретение относится к энергетическому и химическому машиностроению, в частности к производству труб с переменными диаметрами по длине и может быть использовано в производстве конусообразных теплообменных аппаратов. Гибку и последующую формовку ведут последовательным воздействием на развертку...
Тип: Изобретение
Номер охранного документа: 0002516334
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c820

Кожухотрубный теплообменник

Изобретение относится к теплоэнергетической, химической и нефтехимической промышленности и предназначено для использования в многотоннажных промышленных установках. В кожухотрубном теплообменнике, содержащем корпус с днищами, трубный пучок, закрытый с двух сторон трубными решетками,...
Тип: Изобретение
Номер охранного документа: 0002516998
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c92a

Способ диагностики технического состояния авиационных газотурбинных двигателей

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока. Сравнивают поля акустических и газодинамических параметров потока скорости и...
Тип: Изобретение
Номер охранного документа: 0002517264
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d5e7

Способ измерения характеристик резонансных структур и устройство для его осуществления

Изобретение относится к технике резонансных радиотехнических измерений. Способ включает генерацию зондирующего колебания, подачу на вход и прием с выхода резонансной структуры, перестройку частоты зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры,...
Тип: Изобретение
Номер охранного документа: 0002520537
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.e24a

Способ получения наномодифицированных полимерных материалов

Изобретение относится к способу получения полимерных материалов. Способ получения наномодифицированных полимерных материалов включает конденсацию паров мономера. Мономер предварительно нагревают до температуры кипения. Далее пары мономера подают в газовый канал, тем самым создавая первый...
Тип: Изобретение
Номер охранного документа: 0002523716
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e9d4

Способ изготовления сквозных отверстий в кремниевой подложке

Использование: для формирования сквозных отверстий или углублений в кремниевой подложке. Сущность изобретения заключается в том, что формирование сквозных отверстий в кремниевой подложке осуществляют путем размещения на кремниевой подложке алюминиевого образца с заданной формой поперечного...
Тип: Изобретение
Номер охранного документа: 0002525668
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ef2e

Способ изготовления изделий из гранулированных полимерных материалов (варианты)

Изобретение относится к технологии получения изделий из гранулированных полимерных материалов. В пресс-форму засыпают полимер в виде гранул с размерами более 1 мм. Осуществляют холодное прессование и формирование заготовки при давлении, неразрушающем структуру гранул, с последующим спеканием и...
Тип: Изобретение
Номер охранного документа: 0002527049
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f9b4

Способ измерения теплового сопротивления переход-корпус полупроводникового прибора и устройство для его осуществления

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры. Технический результат - повышение точности и...
Тип: Изобретение
Номер охранного документа: 0002529761
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.feb1

Способ измерения акустических характеристик газовых струй на срезе выходных устройств гтд и устройство для его осуществления

Группа изобретений относится к области измерительной техники, в частности к способу и устройству диагностирования газотурбинных двигателей по изменению аэроакустических характеристик потока. Способ измерения акустических характеристик газовых струй на срезе выходных устройств газотурбинных...
Тип: Изобретение
Номер охранного документа: 0002531057
Дата охранного документа: 20.10.2014
Показаны записи 11-20 из 68.
20.03.2014
№216.012.acd1

Способ работы теплоэнергетической установки для утилизации попутного нефтяного газа и теплоэнергетическая установка для его осуществления

Изобретение относится к области энергетики и может быть использовано для выработки электроэнергии при утилизации топлива путем сжигания его в факелах. Изобретение позволит повысить термический коэффициент полезного действия с одновременным уменьшением вредных выбросов. Способ включает сжигание...
Тип: Изобретение
Номер охранного документа: 0002509956
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b412

Теплообменник-реактор

Изобретение относится к области теплотехники и может быть использовано в энергетике, нефтехимической и других отраслях промышленности, в частности в процессах, протекающих с большими тепловыми эффектами. Теплообменник-реактор содержит корпус (1) в форме усеченного конуса с днищами (2) и (3),...
Тип: Изобретение
Номер охранного документа: 0002511815
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c58f

Способ изготовления конусообразных труб для теплообменных аппаратов и устройство для его осуществления

Изобретение относится к энергетическому и химическому машиностроению, в частности к производству труб с переменными диаметрами по длине и может быть использовано в производстве конусообразных теплообменных аппаратов. Гибку и последующую формовку ведут последовательным воздействием на развертку...
Тип: Изобретение
Номер охранного документа: 0002516334
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c820

Кожухотрубный теплообменник

Изобретение относится к теплоэнергетической, химической и нефтехимической промышленности и предназначено для использования в многотоннажных промышленных установках. В кожухотрубном теплообменнике, содержащем корпус с днищами, трубный пучок, закрытый с двух сторон трубными решетками,...
Тип: Изобретение
Номер охранного документа: 0002516998
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c92a

Способ диагностики технического состояния авиационных газотурбинных двигателей

Способ предназначен для испытания, доводки, диагностики и эксплуатации турбореактивных реактивных двигателей, а конкретно для диагностики технического состояния ГТД по акустическим и газодинамическим параметрам потока. Сравнивают поля акустических и газодинамических параметров потока скорости и...
Тип: Изобретение
Номер охранного документа: 0002517264
Дата охранного документа: 27.05.2014
27.06.2014
№216.012.d5e7

Способ измерения характеристик резонансных структур и устройство для его осуществления

Изобретение относится к технике резонансных радиотехнических измерений. Способ включает генерацию зондирующего колебания, подачу на вход и прием с выхода резонансной структуры, перестройку частоты зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры,...
Тип: Изобретение
Номер охранного документа: 0002520537
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.e24a

Способ получения наномодифицированных полимерных материалов

Изобретение относится к способу получения полимерных материалов. Способ получения наномодифицированных полимерных материалов включает конденсацию паров мономера. Мономер предварительно нагревают до температуры кипения. Далее пары мономера подают в газовый канал, тем самым создавая первый...
Тип: Изобретение
Номер охранного документа: 0002523716
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.e9d4

Способ изготовления сквозных отверстий в кремниевой подложке

Использование: для формирования сквозных отверстий или углублений в кремниевой подложке. Сущность изобретения заключается в том, что формирование сквозных отверстий в кремниевой подложке осуществляют путем размещения на кремниевой подложке алюминиевого образца с заданной формой поперечного...
Тип: Изобретение
Номер охранного документа: 0002525668
Дата охранного документа: 20.08.2014
27.08.2014
№216.012.ef2e

Способ изготовления изделий из гранулированных полимерных материалов (варианты)

Изобретение относится к технологии получения изделий из гранулированных полимерных материалов. В пресс-форму засыпают полимер в виде гранул с размерами более 1 мм. Осуществляют холодное прессование и формирование заготовки при давлении, неразрушающем структуру гранул, с последующим спеканием и...
Тип: Изобретение
Номер охранного документа: 0002527049
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f9b4

Способ измерения теплового сопротивления переход-корпус полупроводникового прибора и устройство для его осуществления

Изобретение относится к измерительной технике, в частности к технике измерения тепловых параметров полупроводниковых приборов после изготовления, а также для неразрушающего входного контроля при производстве радиоэлектронной аппаратуры. Технический результат - повышение точности и...
Тип: Изобретение
Номер охранного документа: 0002529761
Дата охранного документа: 27.09.2014
+ добавить свой РИД