×
25.08.2017
217.015.9aef

Результат интеллектуальной деятельности: Силовой каркас для космической аппаратуры

Вид РИД

Изобретение

Аннотация: Изобретение относится к конструкции космической техники. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения. Каркас выполнен на основе тепловых труб. Диаметр и толщина стенок тепловых труб выбраны из условий обеспечения напряжений, не превышающих предел текучести, и обеспечения частоты собственного резонанса труб не менее 150 Гц. Каждый из узлов соединения тепловых труб представляет собой единую деталь с отверстиями для установки концов стыкуемых тепловых труб. Техническим результатом изобретения является повышение прочности, надежности и теплоустойчивости конструкции. 2 з.п. ф-лы, 1 ил.

Изобретение относится к конструкциям космической техники и может быть использовано при проектировании размеростабильных конструкций повышенной жесткости, адаптивных к действию градиентов температур, например ферменных и рамных конструкций каркасов для электронной и оптической аппаратуры, к которым предъявляются высокие требования по жесткости и геометрической стабильности размеров от действия температур при работе в космосе.

Изобретение направлено на обеспечение стабильности размеров каркаса.

Аналогами заявляемого изобретения являются конструкции каркасов для космической аппаратуры по патентам на изобретения RU №№: 2207668 (описание опубликовано 27.06.2003), 2417389 (описание опубликовано 27.04.2011).

Конструкция по патенту RU 2207668 представляет собой каркас рефлектора параболической антенны, выполненный с радиально расположенными элементами жесткости и снабженный теплоизолирующим чехлом, установленным на каркасе с образованием полости для продува воздуха. В полости установлены температурные датчики, вентилятор, блок управления. Радиально расположенные элементы жесткости выполнены воздухонепроницаемыми, с образованием воздушных каналов в виде секторов. Полость для продува воздуха разделена металлическим листом, выполненным из материала с высоким коэффициентом теплопроводности, на термостабилизирующую полость, с упомянутыми каналами в виде секторов, и вспомогательную полость. Полости соединены по краю рефлектора, а также в его центральной части с помощью трубы, в которой установлен вентилятор с подачей воздуха из термостабилизирующей полости во вспомогательную полость. Дополнительно на выходе из вентилятора может быть установлен электронагреватель, а в трубе последовательно с вентилятором может быть установлен дополнительный вентилятор.

Организация движения воздуха по каналам, выполненным в виде секторов, позволила обеспечить одинаковые расходы и скорости его движения при идентичности их проходных сечений, что способствует выравниванию температурного поля. Однако данная конструкция не позволяет обеспечить достаточную стабильность размеров при работе на орбите в условиях тепловых воздействий со стороны тепловыделяющих электронных компонентов во время длительных сеансов наблюдения.

Наиболее близким аналогом по количеству сходных признаков и решаемой задаче к заявляемому изобретению является конструкция по патенту RU 2417389, где заявлен силовой каркас для космической аппаратуры, в частности для телескопа. Силовой каркас состоит из цилиндрических стержней, расположенных под углом друг к другу, в частности продольных, поперечных и диагональных, которые соединены между собой в узлах пересечения путем сварки друг с другом. Стержни выполнены из двух частей разного диаметра. Части стержней разного диаметра соединены между собой биметаллическим кольцом по их внешнему и внутреннему диаметрам, при этом в стержнях выполняют продольные прорези на длину краевого эффекта, которые обеспечивают упругое соединение в местах их крепления к биметаллическому кольцу. Геометрические размеры цилиндрических стержней, патрубков, биметаллических колец и физико-механические характеристики применяемых материалов связаны соотношением:

где:

L - суммарная длина стержня и патрубка;

с - ширина биметаллического кольца;

b - наружный диаметр биметаллического кольца;

а - внутренний диаметр биметаллического кольца;

α1, α2 - коэффициенты линейного расширения материалов биметаллического кольца;

αСТ - коэффициент линейного расширения материала стержня;

H1, Н2 - толщины слоев материалов биметаллического кольца;

E1, Е2 - модули упругости первого рода материалов биметаллического кольца;

- длины продольных прорезей шириной Шi, где ri - радиусы срединной поверхности стержня и патрубка, δi - толщины, i=1, 2;

η - коэффициент, учитывающий упругость стержня и патрубка в местах их соединения с биметаллическим кольцом.

Известная конструкция силового каркаса позволяет уменьшить дефокусировку телескопа, однако это осуществляется за счет значительного усложнения конструкции. Кроме того, для обеспечения прочности конструкции при воздействии высоких динамических нагрузок в процессе выведении космического аппарата на орбиту конструкция выполнена громоздкой.

Технический результат заявляемого изобретения заключается в обеспечении стабильности при работе на орбите и прочности конструкции при наземных операциях и выведении на орбиту при одновременных простоте и значительном уменьшении громоздкости.

Указанный технический результат достигается за счет того, что силовой каркас для космической аппаратуры, состоящий из цилиндрических стержней, расположенных под углом друг к другу, с узлами соединения в местах их пересечения, включает отличительные признаки, а именно:

- силовой каркас выполнен на основе тепловых труб,

- диаметр и толщина стенки тепловых труб выбраны из условий обеспечения напряжений, не превышающих предел текучести, и обеспечения частоты собственного резонанса труб не менее 150 Гц,

- каждый из узлов их соединения представляет собой единую деталь, в которой выполнены отверстия для установки концов стыкуемых тепловых труб.

Тепловые трубы могут быть выполнены из титанового, а узлы соединения из алюминиевого сплавов.

Выполнение силового каркаса на основе тепловых труб позволяет придать конструкционным элементам, наделенным функцией прочности, повышенную теплопроводность и придать им дополнительную функцию - по обеспечению тепловой стабильности, что приводит к прочному и точному позиционированию элементов оптики на своих посадочных местах, а также одних элементов относительно других, которые расположены в разных местах.

Выбор диаметра тепловых труб из условий обеспечения напряжений, не превышающих предел текучести, и обеспечения частоты собственного резонанса труб не менее 150 Гц позволяет при траекторных перегрузках удерживать напряжения в элементах конструкции в зоне абсолютной упругости, что обеспечивает сохранность юстировки оптических элементов, входящих в состав аппаратуры, т.к. обеспечивает прочное и точное их позиционирование.

Выполнение узлов соединения тепловых труб, каждый из которых представляет собой единую деталь, в которой выполнены отверстия для установки концов стыкуемых тепловых труб, позволяет состыковать тепловые трубы с обеспечением требуемой прочности конструкции.

Выполнение тепловых труб из титанового сплава влияет на обеспечение температурной стабильности конструкции, т.к. данный материал обладает необходимыми качествами, а именно высокой удельной прочностью, высокой технологичностью, уменьшенным температурным коэффициентом линейного расширения и минимальным газовыделением в вакууме.

Выполнение узлов соединения титановых труб из алюминиевого сплава позволяет улучшить теплопередачу между тепловыми трубами.

На фиг. 1 представлено заявляемое устройство, где: 1 - боковые элементы каркаса, 2 - верхний торец каркаса, 3 - нижний торец каркаса, 4 - платформа, 5 - ферма оптики, 6 - узел соединения стержней боковых элементов и верхнего торца каркаса, 7 - узел соединения стержней боковых элементов и нижнего торца каркаса.

Примером конкретного выполнения заявляемого устройства может служить каркас оптико-механического блока (ОМБ), расположенного на оптической скамье космического телескопа. Каркас сварен из тепловых труб, представляющих собой цилиндрические стержни диаметром 30 мм, расположенные под углом друг к другу и образующие пространственную конфигурацию, включающую боковые элементы, в количестве 6 шт, верхний и нижний торцы. Материалом для каркаса выбран сплав титана ОТ4 ввиду того, что он обладает необходимыми качествами, а именно высокой удельной прочностью, высокой технологичностью, уменьшенным температурным коэффициентом линейного расширения и минимальным газовыделением в вакууме. Напряжение в трубе выбранного диаметра не превышает 4500 н/см2, а частота собственного резонанса не менее 150 Гц. Трубы состыкованы в местах их пересечения узлами соединения, выполненными в виде единой детали из алюминиевого сплава как высокотеплопроводного и легкого материала. В частности, узел соединения имеет концевые элементы прямоугольного сечения, количество которых соответствует количеству стыкуемых тепловых труб. Отверстия в концевых элементах выполнены глухими и соответствующими диаметрам труб для вклеивания концов стыкуемых тепловых труб. Шесть узлов соединения выполнены с тремя концевыми элементами (соединение боковых элементов с верхним торцом), а три - с четырьмя (соединение боковых элементов с нижним торцом). Каркас соединен с платформой, на которой размещена оптико-электронная аппаратура. Платформа выполнена в форме шестиугольника в виде плоской многослойной панели с периметром, составленным из чередующихся при его обходе коротких и длинных сторон. Верхний торец каркаса повторяет контур платформы, а нижний торец выполнен в виде правильного треугольника, стороны которого ориентированы параллельно длинным сторонам платформы. К нижнему торцу каркаса тремя винтами М8 крепится ферма оптики, которая сварена из титановых труб диаметром 20 мм. Боковые элементы каркаса, пропущенные из вершин верхнего торца, сгруппированы попарно в вершинах нижнего торца, расположенных напротив коротких сторон верхнего торца.

Работает заявляемое устройство следующим образом.

Каркас, состоящий из боковых элементов 1, верхнего торца 2 и нижнего торца 3, вместе с платформой 4 обеспечивает прочность ОМБ при наземных операциях и выведении на орбиту и обеспечивает устойчивость ОМБ при работе на орбите. Элементы каркаса имеют необходимые запасы прочности, которые позволяют при траекторных перегрузках удерживать напряжения в элементах конструкции в зоне абсолютной упругости. Каркас обеспечивает прочное и жесткое позиционирование оптических элементов, расположенных на ферме оптики 5, относительно оптических элементов, расположенных на платформе 4. Узлы соединения 6, 7, выполненные из алюминиевого сплава, позволяют улучшить теплопередачу между тепловыми трубами. Принцип работы и конструкция тепловых труб может быть выполнена аналогично конструкции, описанной в патенте RU 2329922 (опубл. 27.07.2008 г.). На этапе выведения космического аппарата с ОМБ на орбиту обеспечивается прочность конструкции при воздействии высоких динамических нагрузок, т.к. выполняются условия, при которых напряжения в элементах конструкции, удерживающих оптические элементы, не выходят за пределы абсолютной упругости. Температурная стабильность обеспечивается за счет выполнения каркаса на основе тепловых труб. При работе космического модуля с целевой и исследовательской аппаратурой на целевой орбите, в условиях тепловых воздействий со стороны тепловыделяющих электронных компонентов во время длительных сеансов наблюдения, обеспечивается устойчивость конструкции за счет разделения функции обеспечения прочности и теплоустойчивости между силовым каркасом и системой охлаждения.


Силовой каркас для космической аппаратуры
Силовой каркас для космической аппаратуры
Источник поступления информации: Роспатент

Показаны записи 351-360 из 499.
17.10.2019
№219.017.d671

Устройство для предотвращения неконтролируемого доступа

Изобретение относится к устройствам для ограничения доступа и может быть использовано для запирания и одновременного пломбирования крышек малогабаритных приборов с возможностью экстренного открытия. Устройство для предотвращения неконтролируемого доступа состоит из корпуса и шарнирно...
Тип: Изобретение
Номер охранного документа: 0002702999
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d6c2

Способ определения скорости объекта метания конической формы большого удлинения

Изобретение относится к области измерений и испытаний, а именно к измерениям линейной скорости с помощью фотографических средств. Способ определения скорости объекта метания (ОМ) конической формы включает оптическую регистрацию положения, движущегося со сверхзвуковой скоростью ОМ и созданной им...
Тип: Изобретение
Номер охранного документа: 0002702955
Дата охранного документа: 14.10.2019
01.11.2019
№219.017.dc0c

Оптический волоконный датчик

Изобретение относится к оптическим элементам, в частности к компактным элементам фокусировки и сбора лазерного излучения. Оптический волоконный датчик включает фокусирующий и собирающий элемент, которые сформированы из оптического волокна датчика путем оплавления торца с приданием ему...
Тип: Изобретение
Номер охранного документа: 0002704560
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc35

Способ калибровки и стабилизации параметров спектрометра γ-излучения

Использование: для калибровки и стабилизации параметров спектрометра γ-излучения. Сущность изобретения заключается в том, что калибровку и стабилизацию осуществляют от одного и того же встроенного в блок реперного источника γ-излучения, в качестве которого используют радионуклид Th с...
Тип: Изобретение
Номер охранного документа: 0002704564
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd7e

Устройство адаптивного преобразования данных в режиме реального времени

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей. Устройство адаптивного преобразования данных в режиме реального времени содержит: блок кодирования, вычислительное ядро, первая группа входов/выходов которого...
Тип: Изобретение
Номер охранного документа: 0002704879
Дата охранного документа: 31.10.2019
07.11.2019
№219.017.dedd

Взрывное устройство

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между...
Тип: Изобретение
Номер охранного документа: 0002705122
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
13.11.2019
№219.017.e107

Устройство разделения плавучего прибора на герметичные отсеки

Изобретение относится к области подводной техники и может быть использовано в составе дрейфующего автономного гидроакустического прибора. Устройство разделения плавучего прибора на герметичные отсеки содержит герметичный силовой корпус, состоящий из отсеков - аппаратурного и буйкового, поршня,...
Тип: Изобретение
Номер охранного документа: 0002705722
Дата охранного документа: 11.11.2019
16.11.2019
№219.017.e30b

Коллиматор для жесткого рентгеновского излучения

Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n -...
Тип: Изобретение
Номер охранного документа: 0002706219
Дата охранного документа: 15.11.2019
Показаны записи 131-138 из 138.
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
20.02.2019
№219.016.beb6

Аккумуляторная батарея с автономной системой терморегулирования

Изобретение относится к электротехнике и касается аккумуляторных батарей (АБ) с автономной системой терморегулирования (СТР). Согласно изобретению, в АБ с автономной СТР, состоящей из аккумуляторов, установленных в отверстия цельнометаллического теплопроводного корпуса, и автономной системы...
Тип: Изобретение
Номер охранного документа: 0002394307
Дата охранного документа: 10.07.2010
06.04.2019
№219.016.fdb8

Способ нарезания конических зубчатых колес для роторного двигателя

Изобретение относится к станкостроению, а именно к способу нарезания конических колес. Способ включает настройку относительно друг друга червячной фрезы 2 конической формы и нарезаемого колеса 1, которые устанавливают относительно друг друга соприкасающимися поверхностями предварительно...
Тип: Изобретение
Номер охранного документа: 0002684141
Дата охранного документа: 04.04.2019
19.04.2019
№219.017.2dc3

Способ взлета летательного аппарата с катапульты и катапульта для взлета летательного аппарата

Изобретение относится к области авиации, более конкретно к способу взлета летательных аппаратов и катапульте для их взлета. Перед пуском летательный аппарат с помощью узла стыковки соединяют с метательным устройством тележки катапульты и фиксируют в стартовом положении тележку с летательным...
Тип: Изобретение
Номер охранного документа: 0002344971
Дата охранного документа: 27.01.2009
19.04.2019
№219.017.2f85

Размеростабильная оболочка

Изобретение относится к конструкциям размеростабильных оболочек подкрепленного типа и может применяться в высокоточных космических и наземных системах, например, в качестве несущих корпусов телескопов и оптических приборов. Размеростабильная оболочка содержит металлическую обшивку...
Тип: Изобретение
Номер охранного документа: 0002373118
Дата охранного документа: 20.11.2009
18.05.2019
№219.017.5851

Генератор синглетного кислорода

Изобретение относится к генераторам синглетного кислорода и может быть использовано в химических кислород-йодных лазерах, а также в технологических установках по дезинфекции воды, нейтрализации и утилизации промышленных органических загрязнителей и отходов. Устройство включает реакционную...
Тип: Изобретение
Номер охранного документа: 0002307434
Дата охранного документа: 27.09.2007
29.05.2019
№219.017.622e

Способ лазерной резки тонколистового углепластика

Изобретение относится к способу лазерной резки тонколистового углепластика и может быть применено в авиационной и ракетно-космической технике. Технический результат изобретения заключается в обеспечении высокой точности обработки при минимальном дефекте кромки реза (минимальной зоне...
Тип: Изобретение
Номер охранного документа: 0002689346
Дата охранного документа: 27.05.2019
29.05.2019
№219.017.648a

Резонатор лазера

Изобретение относится к квантовой электронике и может быть использовано в конструкциях лазеров. Резонатор лазера содержит опорную конструкцию и несущую конструкцию с установленными на ней зеркалами и снабженную двумя устройствами для крепления на опорной конструкции. Одним из крепежных...
Тип: Изобретение
Номер охранного документа: 0002299505
Дата охранного документа: 20.05.2007
+ добавить свой РИД