×
25.08.2017
217.015.9a0c

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТА

Вид РИД

Изобретение

№ охранного документа
0002609831
Дата охранного документа
06.02.2017
Аннотация: Изобретение относится к медицине и может быть использовано для изготовления костных имплантатов в восстановительной хирургии. Описан способ изготовления имплантата из углеродного материала формированием волокнистой армирующей основы в виде каркаса, построенного из стержней, с последующим осаждением пироуглеродной матрицы последующей механической обработкой блока для придания имплантату требуемого размера и формы и последующей обработкой имплантата на воздухе при температуре 250-350°C или парами воды при температуре 450-650°C. Имплантат по своим механическим и токсическим свойствам полностью соответствует требованиям, предъявляемым к материалам, используемым для замещения костных дефектов, и обладает повышенной биоактивностью. 2 з.п. ф-лы.

Изобретение относится к медицине и может быть использовано для изготовления костных имплантатов в восстановительной хирургии.

В настоящее время для изготовления имплантатов используются материалы различных классов: металлы (титан), керамика (оксиды алюминия и циркония, ситаллы, гидроксиапатит) и некоторые синтетические полимеры (высокомолекулярный полиэтилен и его производные).

Металлические, полимерные и многие другие материалы, используемые в качестве имплантатов, обладают рядом недостатков. Многочисленными исследованиями показано, что применение металлических имплантатов - особенно при воспалительных заболеваниях кости - часто приводит к резорбции костной ткани, а ионы металлов, диффундируя в окружающие ткани, вызывают их поражение - металлоз. К недостаткам металлических имплантатов следует отнести усталость металлов и их подверженность коррозии.

Полимерные материалы не обладают достаточной биологической инертностью, часто вызывают резорбцию костной ткани и подвержены биологическому старению, в процессе которого эти материалы выделяют токсичные и канцерогенные продукты. Самое главное - их механические свойства не обеспечивают опорность оперированной области.

Керамические материалы, обладая многими достоинствами, являются слишком хрупкими и имеют высокий модуль упругости по сравнению с костной тканью, что не позволяет плавно передавать нагрузку с имплантата на кость и, в конечном счете, приводит к резорбции кости.

Известен углеродный композиционный пористый материал для замещения костных дефектов (патент РФ №2181600). Материал полностью состоит из углерода и представляет собой прочный пористый композит, обладающий биосовместимостью. Свойства материала близки к свойствам кости. Имплантаты из такого материала ориентированы к замещению крупных костных дефектов при воспалительных (косный туберкулез, остеомиелит), дегенеративно-дистрофических заболеваниях кости и травмах, прежде всего конечностей и позвоночника.

Способ изготовления такого материала состоит в формировании армирующей основы и последующего осаждения пироуглеродной матрицы. Армирующая основа формируется в виде каркаса, собранного из стержней, сформованных из углеродных волокон. Каркас сначала собирают послойно, ориентируя стержни параллельно друг другу в каждом слое и под углом 60° по отношению к стержням предыдущего и последующего слоев. После сборки необходимого количества слоев в образовавшиеся вертикальные каналы устанавливают вертикальные стержни. Пироуглеродную матрицу осаждают обработкой газообразными углеводородами при температуре, превышающей температуру их термического разложения. Последующей механической обработкой из материала вырезают имплантат необходимых размеров и формы.

Недостатком известного материала является его недостаточно высокая биоактивность, т.е. слабая активация роста клеток новообразованной костной ткани на поверхности имплантата.

Задачей изобретения является создание имплантата с повышенной биоактивностью поверхности имплантата.

Технический результат достигается следующим образом.

Способ изготовления имплантата включает в себя изготовление блока формированием волокнистой армирующей основы в виде каркаса, построенного из стержней, и последующее осаждение пироуглеродной матрицы. Каркас собирают послойно, располагая стержни в каждом слое параллельно друг другу. Каждый слой стержней располагают под углом 60° по отношению к стержням последующего и предыдущего слоев до достижения требуемого количества слоев. После этого в образовавшиеся вертикальные каналы устанавливают дополнительные стержни. Используемые при сборке каркаса стержни сформованы из углеродных волокон таким образом, чтобы волокна располагались вдоль оси стержня: такую формовку обеспечивает, например, метод пултрузии. После сборки каркаса осуществляют осаждение пироуглеродной матрицы композиционного материала из газовой среды, содержащей по меньшей мере один углеводород, при температуре, превышающей температуру его разложения. При этом осаждающийся пироуглерод связывает углеродные волокна, формируя единый композиционный материал в виде прочного блока. Последующей механической обработкой из блока изготавливают имплантат требуемого размера и формы. После механической обработки имплантат обрабатывают на воздухе при температуре 250-350°С или парами воды при температуре 450-650°С.

При обработке на воздухе при температуре ниже 250°C и при обработке парами воды при температуре ниже 450°С не наблюдается заметного изменения биоактивности имплантата. При температуре обработки на воздухе выше 350°С и в парах воды выше 650°С происходит существенное окисление (выгорание) материала имплантата, что может привести к уменьшению его прочности.

Предпочтительно обработку на воздухе или парами воды проводить в течение не менее 10 минут для обеспечения полноты процесса активации воздухом или парами воды.

Предпочтительно, чтобы при сборке армирующего каркаса блока некоторые заранее выбранные стержни, стержни одного, нескольких или всех направлений армирования, используемые для формирования волокнистой армирующей основы, содержали в своем составе 0,1-12% масс. одного или нескольких химических веществ из группы: оксид алюминия, нитрат алюминия, карбид кремния, кремний, ортофосфат кальция, пирофосфат кальция, дигидрофосфат кальция, оксид титана, карбид титана, титан, гидрид титана, оксид циркония, карбид циркония, цирконий, гидрид циркония, оксинитрат циркония, оксихлорид циркония, оксид ниобия, карбид ниобия, оксид гафния, карбид гафния, карбид вольфрама. Это обеспечивает рентгеноконтрастность изготавливаемого имплантата, что упрощает наблюдение за его установкой рентгеновскими методами.

Сущность изобретения состоит в следующем.

Предлагаемый способ изготовления имплантата из композиционного материала можно разбить на несколько стадий:

1. Изготовление армирующей основы блока композиционного материала в виде каркаса, собранного из стержней, содержащих углеродные волокна, ориентированные вдоль оси стержня.

Для формирования армирующего каркаса блока материала используют волокнистые армирующие элементы из углеродных волокон, ориентированных вдоль оси стержней, что обеспечивает наиболее полную реализацию модуля упругости углеродного волокна без травмирования его структуры. Для получения стержней, в частности, можно использовать технологию пултрузии, включающую:

- пропитку углеродных волокон полимерным связующим для формирования жгута,

- протягивание жгута через фильеру для получения требуемого сечения стержня,

- отверждение связующего.

Оптимальные условия получения углеволокнистых армирующих элементов определяют, варьируя концентрацию раствора полимерного связующего, температуру печей отверждения, скорость прохождения жгутов через фильерный блок.

Из стержней, сформованных из углеродных волокон, собирают послойно каркас на оправке. На первом этапе сборки в отверстиях по периметру оправки устанавливают стержни вертикально, далее осуществляют сборку горизонтальных слоев, устанавливая стержни в слое параллельно друг другу и под углом 60° по отношению к стержням предыдущего и последующего слоев. После укладки горизонтальных слоев на нужную высоту в образовавшиеся сквозные вертикальные каналы устанавливают дополнительные стержни. Каркас снимают с оправки.

Для получения в имплантате рентгеновского контраста в ходе сборки каркаса используют углеволокнистые стержни, содержащие химические вещества. Стержни, содержащие химические вещества, укладывают в каркас в тех направлениях и областях получаемого композиционного материала, где рентгеновский контраст необходим. При получении углеволокнистых стержней, содержащих химические вещества, применяют, например, ту же самую технологии пултрузии. Химические вещества вводят в состав стержня до и/или во время и/или после осуществления вышеописанных стадий изготовления углеволокнистого стержня, например, при пропитке углеродных волокон используют суспензию частиц химических веществ в полимерном связующем.

2. Далее каркас блока материала из стержней, сформованных из углеродных волокон, помещают в реактор и в среде газообразного углеводорода (углеводородов) осуществляют формировании пироуглеродной матрицы. Низкомолекулярные углеводороды (метан, этан, пропан, ацетилен, бензол и др.) и их смеси, например природный газ, при повышенной температуре, обычно в интервале 550-1200°С, способны вступать в гетерогенную химическую реакцию разложения с образованием углерода и водорода. Протекание реакции разложения в порах углеволокнистого каркаса обеспечивает формирование пироуглеродной матрицы. При этом могут быть использованы как изотермический, так и термоградиентный метод синтеза пироуглеродной матрицы. Для процесса можно использовать реактор из нержавеющей стали. Нагревателями могут служить углеграфитовые блоки или пластины, а нагрев может осуществляться пропусканием через них электрического тока. Реактор снабжен средствами подачи, регулирования и измерения расхода газа.

В результате такой обработки получают блок углеродного композиционного материала.

Следует заметить, что при использовании при сборке каркаса стержней, содержащих химические вещества, на этапе нагрева углеволокнистого каркаса до температуры осаждения пироуглеродной матрицы, а также в ходе осаждения матрицы содержащиеся в стержнях химические вещества, в зависимости от их состава, остаются неизменными по составу и структуре или преобразовываются в другие химические соединения. Образовавшиеся новые или неизменившиеся в ходе нагрева химические соединения локализованы в стержнях армирующей основы материала и в дальнейшем, при формировании пироуглеродной матрицы, входят в структуру получаемого композиционного материала. В ходе процесса осаждения пироуглерода поверхность частиц химических соединений постепенно покрывается пироуглеродом, который, как матрица, связывает их со всей макроструктурой как стержня, в котором они присутствуют, так и композиционного материала в целом. За счет содержащихся в материале химических соединений обеспечивается рентгеноконтрастность имплантата.

3. Традиционными методами механообработки (точение, фрезерование, сверление) из полученного блока вырезают имплантат необходимого размера и формы. В зависимости от размера блока и размера имплантата из блока могут быть вырезаны несколько имплантатов.

4. После механообработки и удаления продуктов резания с поверхности имплантата его обрабатывают нагреванием на воздухе или в парах воды. Эта обработка имеет целью изменить химическое строение поверхности имплантата. Экспериментально показано, что в области температур 250-350°С на воздухе и 450-650°С в парах воды на поверхности углеродного имплантата происходит образование основных (в отличие от кислотных) кислородсодержащих функциональных групп. Эти функциональные группы в воде и водных растворах за счет процессов гидролиза и ионного обмена в условиях физиологических значений рН придают поверхности имплантата положительный электрический заряд. Положительный заряд поверхности углеродного имплантата в водных растворах, в том числе в биологических растворах (кровь), обеспечивает лучшую адгезию биополимеров, белков крови, межклеточного матрикса и растущих клеток, прежде всего костной ткани.

Изобретение может быть пояснено следующим примером.

Для изготовления композиционного материала используют стержни диаметром 1,2 мм, сформованные из углеродных волокон марки УКН-5К. Стержни изготавливают технологией пултрузии, включающей:

- пропитку углеродных волокон полимерным связующим - водным раствором ПВС для формирования жгута,

- протягивание жгута через фильеру для получения сечения стержня, равного 1,2 мм,

- термообработку при 140°С для отверждения связующего.

Изготовление блока композиционного материала начинают с формирования волокнистой армирующей основы, т.е. со сборки каркаса из стержней, сформованных из углеродных волокон. Для этого:

1. На графитовой оправке устанавливают вертикально по ее периметру в отверстия стержни, которые в дальнейшем будут служить направляющими при сборке каркаса.

2. В горизонтальной плоскости на оправке перпендикулярно направляющим стержням укладывают стержни на расстоянии 1,2 мм друг от друга параллельно друг другу.

3. Следующий (второй) слой формируют на первом, укладывая стержни на таком же расстоянии друг от друга параллельно друг другу под углом 60° к стержням первого слоя.

4. Следующий (третий) слой формируют на втором, укладывая стержни на таком же расстоянии друг от друга параллельно друг другу, под углом 60° к стержням второго слоя в направлении, не совпадающем с направлением первого слоя.

5. Четвертый слой собирают так же, как первый, пятый слой, как второй, и т.д. Необходимую высоту материала получают, укладывая нужное количество слоев.

6. В образовавшиеся после сборки слоев вертикальные каналы каркаса устанавливают вертикальные стержни.

7. Формирование пироуглеродной матрицы производят в реакторе в среде природного газа при 950°С. Обработку производят до увеличения массы каркаса в 3 раза.

В результате получают блок композиционного материала со следующими свойствами: плотность - 1,63 г/см3, модуль упругости материала - 12 ГПа, прочность при сжатии - 92 МПа.

Механической обработкой блока материала изготавливают имплантат необходимого размера и формы. После очистки поверхности имплантата от загрязнений, возникших при механической обработке, имплантат обрабатывают на воздухе при температуре 320°С в течение 30 минут.

Проведенные токсикологические исследования имплантата в соответствии с ГОСТ Ρ ИСО 10993-99 и ГОСТ Ρ 52770-2007 показали:

1. Изменение рН водной вытяжки (3 суток, 37°С, соотношение 10 г материала и 500 мл воды) по сравнению с контрольной дистиллированной водой составляет 0,7 (допустимое значение 1,0).

2. Максимальное значение оптической плотности водной вытяжки в УФ-области спектра в интервале длин волн 230-360 нм составляет 0,1 (допустимое значение 0,3).

3. Содержание в водной вытяжке формальдегида менее 0,01 мг/л, винилацетата - менее 0,02 мг/л (допустимые значения - 0,1 и 0,2 мг/л соответственно).

4. Изучение токсичности на анализаторе токсичности АТ-05, используя замороженную в парах жидкого азота гранулированную сперму быка, показало индекс токсичности 86,4% (допустимое значение 70-120%). Имплантат нетоксичен.

5. Для определения уровня биоактивности имплантата проведен тест сравнения предлагаемого имплантата и известного имплантата, т.е. имплантата без обработки воздухом или парами воды при повышенных температурах. В тесте определялась активность поверхности имплантата поддерживать рост клеток и степень адгезии выращенных клеток к поверхности имплантата. Для определения активности поверхности тестированных имплантатов осуществляли в одинаковых условиях (37°С) рост фибробластов легких эмбриона человека. Было установлено, что предлагаемые в данном изобретении имплантаты поддерживают рост и кластерирование фибробластов значительно активнее и имеют их поверхностную концентрацию на 15% больше, чем известные. При этом одновременно повышается и доля веретенообразных фибробластов (по отношению к сфероидным), что однозначно указывает на более предпочтительное формирование фибробластов на поверхности предлагаемых имплантатов. Адгезионная способность фибробластов, оцененная по изменению концентрации фибробластов на поверхности имплантатов до и после одновременного ополаскивания образцов в физиологическом растворе, у предлагаемых имплантатов выше на более чем 20%.

Таким образом, полученный имплантат по своим механическим и токсическим свойствам полностью соответствует требованиям, предъявляемым к материалам, используемым для замещения костных дефектов, и обладает повышенной биоактивностью.

Источник поступления информации: Роспатент

Показаны записи 51-53 из 53.
29.03.2019
№219.016.ed52

Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в нефтеперерабатывающей промышленности. В пластинчатом теплообменнике для гидрогенизационных установок вторичной переработки нефти, имеющем вертикальный...
Тип: Изобретение
Номер охранного документа: 0002683007
Дата охранного документа: 25.03.2019
09.06.2019
№219.017.8065

Фармацевтическая композиция для профилактики и лечения дисплазий и рака шейки матки и папилломатоза гортани, а также способ профилактики и лечения этих заболеваний на ее основе

Изобретение относится к области медицины и фармакологии и касается фармацевтической композиции для профилактики и лечения опухолей, ассоциированных с вирусами папилломы человека, а именно дисплазии и рака шейки матки и папилломатоза гортани. Изобретение заключается в том, что предлагается...
Тип: Изобретение
Номер охранного документа: 0002196568
Дата охранного документа: 20.01.2003
24.04.2020
№220.018.184d

Способ хирургического лечения первичных и метастатических опухолей позвоночника

Изобретение относится к медицине, а именно к онкологии, травматологии и ортопедии, и может быть использовано для лечения больных с онкологическими поражениями позвоночника. Способ включает хирургический доступ к пораженной области позвоночника, стабилизацию позвоночника транспедикулярной...
Тип: Изобретение
Номер охранного документа: 0002719648
Дата охранного документа: 21.04.2020
Показаны записи 51-60 из 67.
01.03.2019
№219.016.c943

Способ получения изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Техническим результатом изобретения является упрощение технологии изготовления изделия. Сущность изобретения: в способе изготовления изделия, содержащего...
Тип: Изобретение
Номер охранного документа: 0002286617
Дата охранного документа: 27.10.2006
01.03.2019
№219.016.c947

Способ изготовления изделия, содержащего кремниевую подложку с пленкой из карбида кремния на ее поверхности

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Техническим результатом изобретения является упрощение технологии изготовления изделия. Сущность изобретения: в способе изготовления изделия, содержащего...
Тип: Изобретение
Номер охранного документа: 0002286616
Дата охранного документа: 27.10.2006
11.03.2019
№219.016.d723

Натриевая соль 2-метилтио-6-нитро-1,2-4-триазоло[5,1-c]-1,2,4-триазин-7(4h)-она, дигидрат, обладающая противовирусной активностью

Изобретение относится к области биологически активных соединений, касается разработки нового вещества - натриевой соли 2-метилтио-6-нитро-1,2,4-триазоло[5,1-с]-1,2,4-триазин-7-она, дигидрата и предназначено для лечения и профилактики заболеваний, вызываемых патогенными для человека и животных...
Тип: Изобретение
Номер охранного документа: 0002294936
Дата охранного документа: 10.03.2007
11.03.2019
№219.016.d8cd

Рекомбинантные штаммы вируса гриппа, экспрессирующие микобактериальный протективный антиген esat-6, и их использование для профилактики и лечения туберкулеза

Изобретение относится к области медицины. Получены живые аттенуированные рекомбинантные штаммы вируса гриппа, экспрессирующие ранний секреторный антиген Mycobacterium tuberculosis ESAT-6. Изобретение может быть использовано для профилактики и лечения туберкулеза. По ряду показателей...
Тип: Изобретение
Номер охранного документа: 0002318872
Дата охранного документа: 10.03.2008
11.03.2019
№219.016.dd23

Фармацевтические соли аминобицикло[2.2.1]гептанов как ингибиторы транскрипционного фактора nf-kb с противовирусной активностью (варианты) и их применение

Изобретение относится к области органической химии и медицины и касается новых аминопроизводных бициклогептанов, а именно фармацевтических солей 2-(1-аминоэтил)бицикло[2.2.1]гептана формулы (1), их применения для лечения гриппа А. Соединения обладают высокой активностью и низкой токсичностью. 3...
Тип: Изобретение
Номер охранного документа: 0002448692
Дата охранного документа: 27.04.2012
29.03.2019
№219.016.ed52

Пластинчатый теплообменник для гидрогенизационных установок вторичной переработки нефти

Изобретение относится к устройствам для проведения теплообменных процессов между двумя средами через стенку и может быть использовано в нефтеперерабатывающей промышленности. В пластинчатом теплообменнике для гидрогенизационных установок вторичной переработки нефти, имеющем вертикальный...
Тип: Изобретение
Номер охранного документа: 0002683007
Дата охранного документа: 25.03.2019
10.04.2019
№219.017.06fc

Биологически активные пептидные комплексы

Изобретение относится к биологически активным пептидным комплексам с иммуномодулирующей и противовирусной активностью. Предлагаемые пептидные комплексы имеют трехмерную структуру, в которой X отсутствует либо содержит не менее 1 аминокислоты; R1 и R2 - пептидные цепи, содержащие аминокислотные...
Тип: Изобретение
Номер охранного документа: 0002470031
Дата охранного документа: 20.12.2012
10.04.2019
№219.017.0779

6-(2'-амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-c]1,2,4-триазин-7(4н)-он

Описывается новое соединение - 6-(2'-Амино-2'-карбоксиэтилтио)-2-метилтио-4-пивалоилоксиметил-1,2,4-триазоло[5,1-с]1,2,4-триазин-7(4Н)-он формулы (2) обладающее противовирусным действием и низкой токсичностью. Данное соединение может найти применение в медицине. 1 пр., 3 ил.
Тип: Изобретение
Номер охранного документа: 0002455304
Дата охранного документа: 10.07.2012
16.05.2019
№219.017.52a3

Универсальная вакцина против вируса гриппа птиц

Изобретение относится к области генной инженерии и вирусологии. Предложены рекомбинантная белковая молекула М2Е-НВС, а также вирусоподобные частицы, которые образованы из таких молекул. Рекомбинантная вирусоподобная частица на основе ядерного антигена вируса гепатита В представляет на своей...
Тип: Изобретение
Номер охранного документа: 0002358981
Дата охранного документа: 20.06.2009
16.05.2019
№219.017.52aa

Рекомбинантная вакцина против вируса "свиного" гриппа h1n1 и спсоб ее получения

Изобретение относится к области биотехнологии, генной инженерии и вирусологии. Сконструированная рекомбинантная белковая молекула для получения рекомбинантной вакцины против инфекции, вызванной вирусом «свиного» гриппа (H1N1v-2009). Молекула состоит из остатка метионина, последовательности...
Тип: Изобретение
Номер охранного документа: 0002451027
Дата охранного документа: 20.05.2012
+ добавить свой РИД