×
25.08.2017
217.015.9950

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА ИЗ НАНОПРОВОЛОКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологии, может быть использовано в химической промышленности для создания эффективных катализаторов. Заключается в том, что на подложку наносят вспомогательный слой, в котором формируют ряды канавок нанометровой глубины с вертикальными стенками, наносят слой каталитического материала нанометровой толщины, поверх которого формируют маску из фоторезиста с рисунком узких полосок, расположенных поперек канавок, анизотропным травлением удаляют слой каталитического материала до вспомогательного слоя, оставляя его на боковых стенках канавок и под маской, маску удаляют. Подложки с нанопроволоками упорядоченно располагают в реакторе. Технический результат заключается в повышении выхода конечного продукта, уменьшении расхода дорогого каталитического материала и снижении газодинамического сопротивления реактора. 3 з.п. ф-лы, 1 ил.

Изобретение относится к нанотехнологии, может быть использовано в химической промышленности для создания эффективных катализаторов.

В настоящее время нанопроволоки находят все большее применение. Их используют при изготовлении различных электронных, оптических и магнитных устройств, при создании биологических и химических сенсоров и катализаторов. Эти применения основаны на уникальных физических свойствах различных материалов, которые проявляются при нанометровых размерах образцов.

Фундаментальное отличие наночастиц и нанопроволок от объемных материалов заключается в том, что количество атомов на их поверхности соизмеримо с числом атомов в объеме, а радиус кривизны поверхности очень мал. Общепринято, что именно эти особенности обеспечивают высокую каталитическую активность наноструктурированных катализаторов по сравнению с их аналогами на основе объемных материалов [1-3].

Ключевым моментом в гетерогенном катализе является эффективная удельная поверхность катализатора - поверхность частиц катализатора, принимающих участие в электрохимических процессах, отнесенная к массе катализатора. Именно поэтому большинство исследуемых в лабораториях и применяемых в технологии катализаторов содержат наночастицы, размер которых лежит в диапазоне 1-100 нм.

Для увеличения выхода конечного продукта синтеза скорость газового потока относительно катализатора должна быть высокой. При синтезе этилена из смеси метана с кислородом при температуре 550°C на катализаторе, использующем нанопроволоки, относительная объемная скорость газового потока должна быть не менее 20000 в час (20000 объемов газа через 1 объем реактора) [1]. Для промышленного реактора в виде колонны с наполнителем, покрытым катализатором, длиной несколько метров и сечением менее метра скорость потока должна быть несколько десятков метров в секунду, что трудно обеспечить, поэтому приходится использовать много маленьких реакторов с меньшими скоростями потока.

В качестве наполнителя обычно используют пористые вещества типа цеолита и бемита, которые покрывают тонким слоем платины [2]. В порах и трещинах этих материалов образуются наночастицы и нанопроволоки, но площадь этих нанообразований мала по отношению к площади сплошного покрытия наполнителя. Поэтому эффективность такого катализатора относительно невелика. Применение массива исключительно из нанопроволок было бы более эффективно.

Для изготовления нанопроволок в настоящее время используются разные способы: механический [4], метод селективного выращивания [5], с использованием нанодисперсных частиц катализатора роста кристалла [6], фокусированным ионным пучком [7], с использованием процесса формирования спейсера [8], стандартным фотолитографическим процессом [9] и многие другие методы.

Наиболее близким к предлагаемому изобретению техническим решением является способ изготовления нанопроволок, описанный в патенте [8]. Он состоит в том, что на полупроводниковую подложку наносят изолирующий слой, на поверхности которого методом фотолитографии формируют канавки с вертикальными стенками, наносят слой поликремния, который затем анизотропным травлением удаляют с горизонтальных поверхностей до изолирующего слоя, оставляя на боковых стенках канавок нанопроволоки из поликремния.

Задачей, на решение которой направлено предлагаемое изобретение, является получение катализатора, состоящего из подложек с активной поверхностью в виде сплошного упорядоченного массива нанопроволок, который повысит выход конечного продукта, уменьшит расход дорогого каталитического материала (например, платины) и снизит газодинамическое сопротивление реактора.

Поставленная задача решается в способе, включающем следующие шаги: нанесение на подложку вспомогательного слоя; формирование в нем методом фотолитографии и анизотропного травления рядов канавок нанометровой глубины с вертикальными стенками; нанесение на поверхность подложки и боковые стенки канавок нанометрового слоя материала, из которого будут сформированы нанопроволоки, анизотропное травление слоя материала нанопроволок до вспомогательного слоя, отличающемся тем, что в качестве материала нанопроволок используется материал, обладающий каталитической способностью, а перед анизотропным травлением на поверхности подложки методом фотолитографии формируется маска из фоторезиста, которая состоит из узких полосок, расположенных перпендикулярно канавкам.

В качестве подложки используется полированная пластина из кремния, стекла, металла или поликора. В качестве вспомогательного слоя используется двуокись кремния или нитрид кремния. В качестве материала для нанопроволок используются благородные металлы Pt, Pd, Re, Ru, Rh, Os, Ir, Ag или металлы группы Ni, Fe, Co, Cu и их оксиды.

Таким образом, отличительными признаками изобретения являются: 1) использование в качестве слоя, формирующего нанопроволоки, каталитического материала, 2) использование фоторезистивной маски при травлении слоя каталитического материала.

Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач. Использование материала, обладающего каталитической способностью, собственно и обеспечивает каталитический эффект при осуществлении химических реакций. Использование фоторезистивной маски при травлении слоя каталитического материала обеспечивает формирование поперечных полосок (из того же материала, что и нанопроволоки), которые скрепляют длинные нанопроволоки, уменьшая вероятность их отслаивания от подложки при нагреве реактора и обдуве катализатора газовым потоком. Из-за разных коэффициентов термического расширения материалов длинные проводники склонны к отслаиванию от подложки, когда их ширина меньше толщины.

Использование большого количества нанопроволок, порядка 1000 на каждый мм подложки, позволяет увеличить выход конечного продукта при меньшем количестве катализатора. Использование катализатора в виде тонких плоских подложек с активной поверхностью, которые располагаются в реакторе упорядоченно под небольшим углом к газовому потоку, позволяет существенно снизить газодинамическое сопротивление реактора.

Данная совокупность общих и отличительных признаков обеспечивает достижение технического результата, заключающегося в получении катализатора в виде тонких пластин с активной поверхностью, создаваемой сеткой, состоящей из рядов нанопроволок, скрепленных поперечными полосками из того же материала. Пластины катализатора устанавливаются в реакторе упорядоченно на небольшом расстоянии одна от другой под определенным углом к газовому потоку. Оптимальное количество подложек в реакторе, расстояние между ними и угол по отношению к газовому потоку определяются экспериментально для каждого конкретного технологического процесса.

В качестве примера рассмотрим применение данного способа формирования сетки нанопроволок из платины для использования в качестве катализатора. На кремниевую подложку диаметром 100 мм осаждением наносится слой двуокиси кремния толщиной 0,5 мкм. С помощью методов фотолитографии и плазменного травления в этом слое формируются ряды канавок глубиной 20-50 нм. Ширина канавок и расстояние между ними одинаковые и равны минимальному размеру, воспроизводимому применяемым оборудованием, например, 1 мкм.

На эту подложку методом магнетронного напыления наносится слой платины толщиной 10-30 нм. Для увеличения адгезии платины к слою двуокиси кремния напыление проводится на нагретую подложку.

Поверх этого слоя наносится слой фоторезиста, который засвечивается ультрафиолетовыми лучами через фотошаблон, который использовался для формирования канавок, но повернутый на 90°, или другой шаблон с более редким расположением полосок. После засветки фоторезист обрабатывается в проявителе и задубливается. При этом формируется фоторезистивная маска, которая используется для локального удаления слоя платины в тех местах, где он не защищен слоем фоторезиста.

Проводится ионно-плазменное травление (распыление) платины ионами аргона. После травления фоторезистивная маска удаляется. На подложке образуется сетка из 1000 нанопроволок на 1 мм, скрепленных полосками шириной 1 мкм.

На фиг. 1 показан фрагмент полученной на кремниевой пластине сетки из нанопроволоки, где А-А - сечение подложки вдоль полоски, скрепляющей нанопроволоки, Б-Б - сечение подложки между полосками, скрепляющими нанопроволоки.

Практическая осуществимость данного способа обеспечивается тем, что все используемые в нем приемы по отдельности давно реализованы на практике. Положительный эффект обеспечивается большим числом нанопроволок из каталитического материала на поверхности пластин (подложек).

Источники информации

1. Патент США №8962517.

2. Патент РФ №2529680.

3. Патент РФ №2528988.

4. Патент РФ №2529458.

5. Патент РФ №2437180.

6. Патент РФ №2526066.

7. Патент РФ №2457573.

8. Патент США 8405168 В2.

9. Lee K.N., Jung S.W., Kim W.H., Lee M.H., Shin K.S., Seong W.K

Well controlled assembly of silicon nanowires by nanowire transfer method // Nanotechnology. - 2007. - №18(44): 445302. - 7 pp.


СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА ИЗ НАНОПРОВОЛОКИ
Источник поступления информации: Роспатент

Показаны записи 11-15 из 15.
26.08.2017
№217.015.ddce

Способ формирования нитей кремния металл-стимулированным травлением с использованием серебра

Использование: для создания металлстимулированным травлением полупроводниковых структур с развитой поверхностью. Сущность изобретения заключается в том, что способ формирования нитей кремния металлстимулированным травлением с использованием серебра заключается в выращивании слоя пористых...
Тип: Изобретение
Номер охранного документа: 0002624839
Дата охранного документа: 07.07.2017
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0a18

Способ лазерной обработки нанокомпозитного покрытия имплантанта связки коленного сустава

Изобретение относится к медицине и может бы использовано для формирования нанокомпозитного покрытия имплантата связки коленного сустава. Для этого проводят следующие стадии: 1) подготавливают поверхность заготовки имплантата путем обезвоживания поверхности имплантата, с промывкой...
Тип: Изобретение
Номер охранного документа: 0002632114
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bdd

Способ изготовления пластичных радиоэлектронных узлов и межсоединений

Настоящее изобретение относится к приборостроению, а именно к технологии производства пластичных электронных устройств и межсоединений, которые обладают способностью компенсировать большие деформации (растяжение и сжатие), сохраняя при этом функциональное состояние, и способу получения таких...
Тип: Изобретение
Номер охранного документа: 0002636575
Дата охранного документа: 24.11.2017
Показаны записи 11-20 из 23.
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0a18

Способ лазерной обработки нанокомпозитного покрытия имплантанта связки коленного сустава

Изобретение относится к медицине и может бы использовано для формирования нанокомпозитного покрытия имплантата связки коленного сустава. Для этого проводят следующие стадии: 1) подготавливают поверхность заготовки имплантата путем обезвоживания поверхности имплантата, с промывкой...
Тип: Изобретение
Номер охранного документа: 0002632114
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
20.01.2018
№218.016.1bdd

Способ изготовления пластичных радиоэлектронных узлов и межсоединений

Настоящее изобретение относится к приборостроению, а именно к технологии производства пластичных электронных устройств и межсоединений, которые обладают способностью компенсировать большие деформации (растяжение и сжатие), сохраняя при этом функциональное состояние, и способу получения таких...
Тип: Изобретение
Номер охранного документа: 0002636575
Дата охранного документа: 24.11.2017
10.05.2018
№218.016.3971

Способ получения нанопорошка оксинитрида алюминия

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16
Тип: Изобретение
Номер охранного документа: 0002647075
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.4a9b

Способ локального травления двуокиси кремния

Изобретение относится к микроэлектронике, способам контроля и анализа структуры интегральных схем, к процессам жидкостного травления. Сущность изобретения: выравнивание локальной неравномерности толщины слоя двуокиси кремния на поверхности кристалла ИС, образовавшейся в процессе...
Тип: Изобретение
Номер охранного документа: 0002651639
Дата охранного документа: 23.04.2018
03.03.2019
№219.016.d278

Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля

Изобретение относится к области порошковой металлургии. Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля включает стадию предварительного выделения заданной фракции путем классификации исходного порошкообразного материала зернистостью 5-150...
Тип: Изобретение
Номер охранного документа: 0002681022
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.f1b6

Плазменная установка для получения нанодисперсных порошков

Изобретение относится к области получения наноразмерных порошков (НП) элементов, неорганических соединений и композиций, в частности к плазменному оборудованию для производства НП различного назначения. Реактор имеет определенные соотношения геометрических размеров, связывающие выходной диаметр...
Тип: Изобретение
Номер охранного документа: 0002311225
Дата охранного документа: 27.11.2007
29.03.2019
№219.016.f711

Способ получения нанопорошков систем элемент-углерод

Изобретение может быть использовано в химической промышленности. Получение нанопорошков систем элемент-углерод из элементов и их соединений проводится в термической плазме смеси углеводорода с одним из компонентов или смесью компонентов из группы: водяной пар, диоксид углерода. В реагирующей...
Тип: Изобретение
Номер охранного документа: 0002434807
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.658e

Способ реактивного ионного травления слоя нитрида титана селективно к алюминию и двуокиси кремния

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структур интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к Al и SiO при реактивном ионном травлении его в плазме CF+O при соотношении...
Тип: Изобретение
Номер охранного документа: 0002392689
Дата охранного документа: 20.06.2010
+ добавить свой РИД