×
25.08.2017
217.015.990a

Результат интеллектуальной деятельности: Концентрат на основе квазикристаллических фаз для получения наполненных термопластичных полимерных композиций и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения концентратов на основе термопластичных матриц, наполненных квазикристаллическими частицами, предназначенных для получения полимерных композиционных материалов. Описан концентрат для получения термопластичных полимерных композиций, содержащий термопластичную полимерную матрицу и поверхностно модифицированный квазикристаллический наполнитель на основе систем Al-Cu-Fe и Al-Cu-Cr при следующем соотношении компонентов (масс. %): квазикристаллический наполнитель - 10-60, термопластичная полимерная матрица - остальное, при этом размер частиц квазикристаллического наполнителя составляет менее 45 мкм. Также описан способ получения концентрата. Технический результат: получен концентрат на основе квазикристаллических наполнителей и термопластичных полимеров для обеспечения равномерного распределения наполнителя. 2 н.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к способам получения концентратов на основе термопластичных матриц, наполненных квазикристаллическими частицами, предназначенных для получения дисперсно-упрочненных полимерных композиционных материалов.

Исследования свойств квазикристаллов ведутся более 20 лет. В качестве привлекательных черт, присущих квазикристаллам, которые могут представлять интерес с точки зрения практических применений, обычно рассматриваются сочетание их высокой твердости, износостойкости, с низкой поверхностной энергией, малыми значениями коэффициента трения, значительной радиационной и коррозионной стойкостью, низкими значениями электро- и теплопроводности и необычными оптическими свойствами

1. Shaitura S. and Enaleeva А.А. Fabrication of Quasicrystalline Coatings: A Review. Crystallography Reports, 2007, Vol. 52, No. 6, pp. 945-952.

2. Samavat F., Tavakoli M.H., Habibi S., et all Quasicrystals // Open Journal of Physical Chemistry, 2012, 2, 7-14.

3. Jean-Marie Dubois, Song Seng Kang and Alain Perrot. Towards applications of quasicrystals // Materials Science and Engineering, A 179/A 180 (1994) 122-126.

4. Vekilov Yu. Kh., Chernikov M.A. Quasicrystals // Physics-Uspekhi, 53 (2010), p. 537-560.

5. Koester U., Liu W., Hertzberg H. and M. Michel, Mechanical properties of quasicrystalline and crystalline phases in Al-Cu-Fe alloys. // J. Non-Cryst. Solids 153/154 (1993) p. 446-452.

6. Jenks C.J., Thiel P.A. Surface Properties of Quasicrystals // MRS Bulletin. - 1997. - V. 22. - №11. - P. 55-58.

7. E. Huttunen-Saarivirta Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review // Journal of Alloys and Compounds 363 (2004) 150-174.

В качестве основного недостатка квазикристаллов, ограничивающего их практическое использование можно рассматривать низкую вязкость разрушения, составляющую порядка 0,5-3,5 МПа⋅м [5 Koester U., Liu W., Hertzberg H. and M. Michel, Mechanical properties of quasicrystalline and crystalline phases in Al-Cu-Fe alloys. // J. Non-Cryst. Solids 153/154 (1993) p. 446-452 7 E. Huttunen-Saarivirta Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review // Journal of Alloys and Compounds 363 (2004) 150-174.

8. Thiel, J.-M. Dubois Quasicrystals. Reaching maturity for technological applications // Materials Today Volume 2, Issue 3, 1999, p. 3-7,

в то время как для металлических материалов характерны значения превышающие 40 МПа⋅м. Небольшое сопротивление распространению трещин при температурах ниже 450°С, ограничивает использование квазикристаллов в виде монолитных деталей и пленочных покрытий большой толщины.

Представляет интерес использование квазикристаллов систем Al-Cu-Fe и Al-Cu-Cr в качестве дисперсионного упрочнения алюминиевых сплавов благодаря высокой твердости частиц и хорошего сочетания с материалом матрицы [7 Е. Huttunen-Saarivirta Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review // Journal of Alloys and Compounds 363 (2004) 150-174.

9. Roy M. Formation and magnetic properties of mechanically alloyed Al65Cu20Fe15 Quasicrystal // Journal of Magnetism and Magnetic Materials 302 (2006) 52-55.

10. Enrique Optimizing the thermoelectric efficiency of icosahedral quasicrystals and related complex alloys // PHYSICAL REVIEW B80, 205103 (2009).

11. Y. Takagiwa, T. Kamimura, S. Hosoi, J.T. Okada and K. Kimura Thermoelectric properties of polygrained icosahedral Al71-xGaxPd20Mn9 (x=0, 2, 3, 4) quasicrystals // J of Applied Physics 104, 073721 (2008)].

Квазикристаллы Al-Cu-Fe рассматриваются в качестве перспективных наполнителей при создании композиционных материалов с полимерными матрицами, обеспечивая улучшение физико-механических, трибологических, тепловых характеристик.

12. Laplanche G., Joulain A., Bonneville J., et all Microstructures and mechanical properties of Al-base composite materials reinforced by Al-Cu-Fe particles // Journal of Alloys and Compounds, Volume 493, Issues 1-2, 18 March 2010, Pages 453-460.

13. Y.H Qi, Z.P Zhang, Z.K Hei, С Dong The microstructure analysis of Al-Cu-Cr phases in Al65Cu20Cr15 quasicrystalline particles / Al base composites // Journal of Alloys and Compounds, Volume 285, Issues 1-2, 30 June 1999, Pages 221-228.

14. Tsai A.P., Aoki K., Inoue A., Masumoto T. Synthesis of Stable Quasicrystalline Particle-Dispersed Al Base Composite Alloys. // J. Mater. Res. 1993. V. 8. P. 5-7.

15. Kaloshkin S.D., Tcherdyntsev V.V., Laptev A.I., et all "Structure and Mechanical Properties of Mechanically Alloyed Al / Al-Cu-Fe Composites" // Journal of Materials Science, 2004, V. 39. P. 5399-5402.

16. Kaloshkin S.D., Tcherdyntsev V.V., Stepashkin A.A., et all "Mechanical Alloying of Metal Matrix Composites Reinforced by Quasicrystals" // Journal of Metastable and Nanocrystalline Materials, 2005, V. 24-25, P. 113-116. В качестве материалов матрицы могут выступать эпоксидные связующие [12. Laplanche G., Joulain A., Bonneville J., et all Microstructures and mechanical properties of Al-base composite materials reinforced by Al-Cu-Fe particles // Journal of Alloys and Compounds, Volume 493, Issues 1-2, 18 March 2010, Pages 453-460 13. Y.H Qi, Z.P Zhang, Z.K Hei, С. Dong The microstructure analysis of Al-Cu-Cr phases in Al65Cu20Cr15 quasicrystalline particles / Al base composites // Journal of Alloys and Compounds, Volume 285, Issues 1-2, 30 June 1999, Pages 221-228], полифениленсульфид PPS [13. Y.H Qi, Z.P Zhang, Z.K Hei, С Dong The microstructure analysis of Al-Cu-Cr phases in Al65Cu20Cr15 quasicrystalline particles / Al base composites // Journal of Alloys and Compounds, Volume 285, Issues 1-2, 30 June 1999, Pages 221-228], сверхвысокомолекулярный полиэтилен UHMWPE [14. Tsai A.P., Aoki K., Inoue A., Masumoto T. Synthesis of Stable Quasicrystalline Particle-Dispersed Al Base Composite Alloys. // J. Mater. Res. 1993. V. 8. P. 5-7. 16. Kaloshkin S.D., Tcherdyntsev V.V., Stepashkin A.A., et all "Mechanical Alloying of Metal Matrix Composites Reinforced by Quasicrystals" // Journal of Metastable and Nanocrystalline Materials, 2005, V. 24-25, P. 113-116.], полиамид PA [15. Kaloshkin S.D., Tcherdyntsev V.V., Laptev A.I., et all "Structure and Mechanical Properties of Mechanically Alloyed Al / Al-Cu-Fe Composites" // Journal of Materials Science, 2004, V. 39. P. 5399-5402].

Использование для наполнения эпоксидных связующих и термопластичных полимеров Al-Cu-Fe квазикристаллов позволяет в 2 раза увеличить модуль упругости, повысить теплостойкость по сравнению с исходными не наполненными материалами. Износостойкость композиций с квазикристаллами выше, чем у наполненных карбидом кремния и оксидом алюминия [12. Laplanche G., Joulain A., Bonneville J., et all Microstructures and mechanical properties of Al-base composite materials reinforced by Al-Cu-Fe particles // Journal of Alloys and Compounds, Volume 493, Issues 1-2, 18 March 2010, Pages 453-460], что в сочетании с низким коэффициентом трения позволяет изготавливать из них детали для подшипников сухого трения [13. Y.H Qi, Z.P Zhang, Z.K Hei, С. Dong The microstructure analysis of Al-Cu-Cr phases in Al65Cu20Cr15 quasicrystalline particles / Al base composites // Journal of Alloys and Compounds, Volume 285, Issues 1-2, 30 June 1999, Pages 221-228].

Низкий коэффициент трения связан с тем, что квазикристаллы имеют низкую поверхностную энергию (28 мДж/м2) [7. Е. Huttunen-Saarivirta Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review // Journal of Alloys and Compounds 363 (2004) 150-174]. Для сравнения самый скользкий фторопласт имеет поверхностную энергию - 18 мДж/м2, монокристалл Al2O3 - 47 мДж/м2, вода - 72 мДж/м2, чистые металлы - на один - два порядка выше. Это указывает на то, что межатомные связи в значительной мере насыщены даже в поверхностном слое.

В настоящий момент, в зависимости от нефтяного месторождения, осложненный фонд скважин составляет от 25 до 70% от общего числа действующих. Среди осложняющих факторов типичны: свободный газ на приеме насоса, аномально высокая температура среды на глубине подвески насоса, наличие механических примесей, солеотложения, асфальтено-смоло-парафиновые отложения (АСПО), искривленность ствола скважины, а также технологическая связанность всех перечисленных проблем. На долю АСПО может приходиться до 80% от общего числа скважин осложненного фонда.

Использование низкой поверхностной энергии квазикристаллов, сопоставимой с поверхностной энергией полимеров, при разработке износостойких полимерных покрытий и массивных изделий, предназначенных для применения в нефтеперекачивающем оборудовании, позволяет получать материалы с низкой скоростью осаждения на их поверхности асфальтено-смоло-парафиновых отложений и солевых частиц, являющихся одними из основных факторов, осложняющих добычу нефти.

Защитные покрытия для энергетического комплекса на рынке представлены в основном продуктами на основе полимеров полиолефиновой группы и полимочевины. Основной технологией получения композиционных материалов для таких защитных покрытий является метод экструзионного смещения компонент с последующей грануляцией.

Использование квазикристаллов для создания полимерматричных композиционных материалов имеет ряд особенностей. Необходимо обеспечить адгезионное взаимодействия между материалом матрицы - полимером полиолефиновой группы и квазикристаллами, обладающими низкой поверхностной энергией, обеспечить дисперсность частиц наполнителя менее 3 мкм, отсутствия примесей фаз с высокой поверхностной энергией, обеспечить равномерное распределения наполнителя в матрице.

С учетом этих требований получение частиц квазикристаллического наполнителя заданной морфологии возможно с использованием метода механохимического синтеза прекурсоров из чистых компонентов с последующим отжигом в инертной атмосфере или вакууме, так как измельчение высокотвердых квазикристаллических частиц, полученных по другим технологиям в виде массивных образцов, лент, пленок, приводит к их загрязнению частицами с высокой поверхностной энергией.

Задачей изобретения является упрощение технологии введения квазикристаллических наполнителей в термопластичные полимеры полиолефиновой группы.

Технический результат заключается использовании для обеспечения равномерного распределения квазикристаллического наполнителя в композиционном материале с заданными концентрациями квазикристаллических наполнителей концентратов, содержащих полимерную матрицу на основе термопластичных полимеров с высокой текучестью расплава (не менее 15, по ISO 1133-2011 (MFR), 190°С/3,8 кг), и поверхностно модифицированных квазикристаллических наполнителей на основе систем Al-Cu-Fe и Al-Cu-Cr с размером поликристаллических частиц менее 45 мкм, содержанием квазикристаллической фазы в наполнителе более 90 масс. % и массовой долей наполнителя в концентрате 10-60 масс. % и способе его получения.

Технический результат достигается следующим образом.

Концентрат для получения термопластичных полимерных композиций содержит термопластичную полимерную матрицу и поверхностно модифицированный квазикристаллический наполнитель на основе систем Al-Cu-Fe и Al-Cu-Cr при следующем соотношении компонентов (масс. %):

квазикристаллический наполнитель - 10-60

термопластичная полимерная матрица - остальное.

При этом размер частиц квазикристаллического наполнителя составляет менее 45 мкм.

Технический результат достигается следующим образом.

Способ получения концентрата для получения термопластичных полимерных композиций включает поверхностную модификацию частиц квазикристаллического наполнителя в спиртовом растворе силанов, в режиме ультразвуковой кавитационной обработки, сушку наполнителя, экструзионное смешение квазикристаллического наполнителя с термопластичной полимерной матрицей, обладающими высокой текучестью расплава (не менее 15, по ISO 1133-2011 (MFR), 190°С/3,8 кг), при температуре, на 10-20°С выше температуры плавления полимера, и грануляцию.

Изобретение поясняется чертежами, где на фигуре 1 показана микроструктура спеченных квазикристаллических порошков после отжига в аргоне, система Al-Cu-Fe (Al65Cu23Fe12), на фигуре 2 изображена микроструктура спеченных квазикристаллических порошков после отжига в аргоне, система Al-Cu-Cr (Al73Cu11Cr16), на фигуре 3 показана структура квазикристаллического наполнителя Al-Cu-Fe (Al65Cu23Fe12) после модификации триэтоксивинилсиланом, на фигуре 4 изображена структура квазикристаллического наполнителя Al-Cu-Cr (Al73Cu11Cr16) после модификации триэтоксивинилсиланом, на фигуре 5 показана микроструктура концентратов квазикристаллический наполнитель - термопластичный полимер.

В качестве исходных материалов для получения концентратов следует использовать:

Квазикристаллы системы Al-Cu-Fe, например Al65Cu23Fe12 в виде агрегатов размерами менее 45 мкм, состоящих из отдельных поликристаллических частиц размерами менее 3 мкм, с содержанием квазикристаллической фазы в наполнителе не менее 90 масс. %

Квазикристаллы Al-Cu-Cr, например Al73Cu11Cr16 в виде агрегатов размерами менее 45 мкм, состоящих из отдельных поликристаллических частиц размерами менее 3 мкм, содержание квазикристаллической фазы в порошке наполнителе не менее 90 масс. %.

Для поверхностной обработки квазикристаллических наполнителей следует использовать спиртовые растворы силанов, к примеру: Triethoxy(vinyl)silane, Polydimethylsiloxane, в спирте этиловом техническом марки А по ГОСТ 10749. 1-80.

В качестве полимерной матрицы используются термопластичные полимеры, например Этиленвинилацетат марки Evatane 28-40 (содержание винилацетата 27-29 масс. %, температура плавления 70°С), Этиленвинилацетат марки Evatane 28-05 (содержание винилацетата 27-29 масс. %, температура плавления 72°С), Этиленакрилэстер марки Lotader 3210 (содержание бутил акрилата 6 масс. %, малеинового ангидрида 3,1 6 масс. %), температура плавления 107°С) и другие.

Основные стадии процесса получения гранулированного концентрата

Подготовка квазикристаллических порошков.

Микроструктура исходных квазикристаллических наполнителей представлена на фиг. 1 и 2.

Для измельчения квазикристаллических порошков используется ступковая мельница Fritsch Pulverisette 2, для этого навеска 50±1 г порошка и засыпается в ступку.

Время помола 10 мин с постепенным увеличением давящего усилия.

После помола порошок квазикристаллов помещается в стаканчик для взвешивания.

Проводится контрольное взвешивание на лабораторных весах.

Далее порошок в стаканчике помещается в термостат при температуре около 105±1°С, до тех пор, пока масса порошка вместе со стаканчиком не уровняется.

После чего проводят силанирование квазикристаллических порошков. Для силанирования используется растворы силанов в этиловом спирте. С помощью мерной мензурки отмеряется 10±1 мл этилового спирта. При помощи механического одноканального дозатора набирается 2±0,5 мл силана для приготовления 20% раствора.

Растворение проводят в колбе при постоянном перемешивании при помощи магнитной мешалки. Скорость вращения магнитной мешалки 330 об/мин. В раствор силана в спирте постепенно добавляют порошок квазикристаллов. Перемешивание проводят в течение 10 мин при комнатной температуре в режиме ультразвуковой кавитационной обработки.

Приготовленную взвесь ставят в термостат, оборудованный вытяжкой, при температуре 60±0,5°С на 6 часов. В течение сушки проводят контрольное взвешивание, сушку проводят до тех пор, пока масса не выровняется. Структура обработанных силаном квазикристаллических наполнителей представлена на фиг. 3 и 4.

Далее осуществляют экструзионное смешение спланированных квазикристаллических порошков с термопластичным связующим. После полного высушивания порошка квазикристаллов проводят экструзионное смешение полимера с квазикристаллами.

В качестве матричного полимера используются этиленвинилацетат или этиленакрилэстер. Экструзионное смешивание проводится на двухшнековом экструдере LTE-16. Устанавливается режим нагрева от комнатной температуры до оптимальной температуры расплавления используемого полимера плюс 10±20°C с погрешностью не более ±1°С.

Постепенно подаются в объем экструдера гранулы полимера и порошок квазикристаллов. Скорость вращения шнеков экструдера 20 об/мин. Приготовленная смесь проходит через фильеру необходимого размера и сечения.

После чего осуществляют гранулирование смеси.

Выдавливаемая из экструдера стренга попадает в ванну с холодной водой, температура которой 25±1°С. При помощи валков, которыми оборудована ванна, стренга продвигается с оптимальной скоростью по ванне. После прохождения ванны и охлаждения стренга попадает в гранулятор, скорость вращения ротора гранулятора установлена на 1000 об/мин.

Полученный гранулированный концентрат помещается в термостат при 80±0,5°С до стабильной массы. Высушенный гранулированный концентрат упаковывается в пакеты, на которые наносится маркировка с указанием даты получения и марки исходного сырья. Микроструктура полученных гранулированных концентратов представлена на фиг 5 и 6.

Для описания свойств полученных концентратов проведено определение показателей текучести расплавов по ISO 1133-2011 (MFR), для температуры 190°С и стандартизованных нагрузок 1,2-5 кг с помощью экструзионного пластометра Ceast MF50. Показатели текучести расплавов концентратов, полученных для различных квазикристаллических систем, представлены в таблицах 1 и 2.

Полученные концентраты обладают высокой текучестью расплава и пригодны для экструзионного наполнения квазикристаллами полимеров полиолефиновой группы с заданными концентрациями, обеспечивая равномерное распределение частиц.


Концентрат на основе квазикристаллических фаз для получения наполненных термопластичных полимерных композиций и способ его получения
Концентрат на основе квазикристаллических фаз для получения наполненных термопластичных полимерных композиций и способ его получения
Источник поступления информации: Роспатент

Показаны записи 11-20 из 338.
20.03.2015
№216.013.3371

Защитное композиционное полимерматричное порошковое покрытие на основе полифениленсульфида

Изобретение относится к композиционным порошковым покрытиям на основе полимеров, предназначенных для защиты изделий из металлических сплавов от воздействия агрессивной среды. Порошковая композиция для покрытия включает полифениленсульфид и дополнительно содержит ультрадисперсный порошок...
Тип: Изобретение
Номер охранного документа: 0002544644
Дата охранного документа: 20.03.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
Показаны записи 11-20 из 212.
20.03.2015
№216.013.3371

Защитное композиционное полимерматричное порошковое покрытие на основе полифениленсульфида

Изобретение относится к композиционным порошковым покрытиям на основе полимеров, предназначенных для защиты изделий из металлических сплавов от воздействия агрессивной среды. Порошковая композиция для покрытия включает полифениленсульфид и дополнительно содержит ультрадисперсный порошок...
Тип: Изобретение
Номер охранного документа: 0002544644
Дата охранного документа: 20.03.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
+ добавить свой РИД