×
25.08.2017
217.015.98e2

Результат интеллектуальной деятельности: Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин

Вид РИД

Изобретение

№ охранного документа
0002609819
Дата охранного документа
06.02.2017
Аннотация: Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин. Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин снабжено источником давления газа, подключенным к смесительному ресиверу через регулятор расхода газовой смеси, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего. Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру. 4 з.п. ф-лы, 4 ил.

Изобретение относится к технике испытаний газотурбинных и турбореактивных двигателей и может быть использовано при исследовании процессов в проточной части турбомашин.

Рабочие процессы современных газотурбинных двигателей характеризуются высокими значениями температуры в камерах сгорания и других проточных элементах двигателя, что приводит к снижению прочностных характеристик элементов двигателей, уменьшению их моторесурса и ухудшению безопасности эксплуатации двигателей при использовании на транспортных средствах, в энергетике и в других областях техники. Поэтому при проведении исследований и проектировании новых двигателей с повышенными требованиями к организации рабочего процесса и обеспечению термостойкости проточных элементов двигателя необходимо очень точно воссоздавать условия работы проточных элементов двигателя, моделируя характер течения, температуру и состав рабочей среды, контролируя содержание поглощающих примесей в продуктах сгорания, и проводить доводку и испытание моделей элементов двигателей в условиях, наиболее приближенных к реальным.

Известно устройство для проведения высокотемпературных газодинамических испытаний летательных аппаратов, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры, источник давления воздуха, подключенный трубопроводом с регулятором расхода к регулируемому проточному подогревателю, выполненному электродуговым, в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, и подключенного выходом к подводящему трубопроводу испытательной камеры, выполненному соплообразным (патент US 3029635).

Известное устройство не имеет средств для моделирования процессов, связанных со сгоранием топлива в силовой установке летательного аппарата, т.к. предназначено для моделирования внешних высотных условий обтекания корпуса летательного аппарата, которые характеризуются такими параметрами, как скорость потока и его температура. Поэтому оно не может быть использовано при исследовании процессов в проточной части турбомашин.

Известно устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры, источник давления воздуха, подключенный трубопроводом с регулятором расхода к смесительному ресиверу, и регулируемый проточный подогреватель рабочей среды, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры (патент ЕР 1990623).

В известном устройстве моделируется как внешний поток рабочей среды, позволяющий проводить исследование процесса обтекания корпуса испытуемого объекта, так и поток рабочей среды в проточной части двигателя, при этом регулирование подачи рабочей среды осуществляется, по меньшей мере, по одному из двух параметров - по температуре или по скорости подачи рабочей среды.

Недостатком известного устройства является отсутствие в нем средств, позволяющих регулировать состав подаваемой среды в проточные элементы исследуемых турбомашин, что существенно снижает функциональные возможности известного устройства и практически исключает возможность проведения исследований процесса работы турбомашины на всех возможных режимах и на разных видах топлива.

Кроме того, к недостаткам известного устройства следует отнести отсутствие в нем предварительного подогрева рабочей среды, осуществляемого перед подачей ее в проточный подогреватель, что существенно снижает возможность с достаточной точностью регулировать температуру рабочей среды, подаваемой в испытательную камеру, с учетом того, что температура в камере сгорания современных газотурбинных двигателей достигает значений порядка 2000°С.

Наиболее близким техническим решением является устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин, содержащее испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры и парциального давления газовой смеси, источник давления воздуха, подключенный трубопроводом с регулятором расхода к смесительному ресиверу, предварительный подогреватель воздуха, установленный в трубопроводе подачи воздуха в смесительный ресивер, и регулируемый проточный подогреватель газовой смеси, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры (патент US 2004216535).

В известном устройстве в качестве смесительного ресивера и регулируемого проточного подогревателя газовой смеси используется камера сгорания, что обеспечивает возможность проводить исследование проточных элементов турбомашин в условиях, приближенных к реальным температурным режимам силовых установок летательных аппаратов. Однако такое выполнение проточного подогревателя в известном устройстве ограничивает возможности моделирования в нем реальных процессов взаимодействия рабочей среды с проточными элементами только для турбомашин определенного типа, работающих на определенном виде топлива, т.к. конструкция камеры сгорания однозначно привязана к виду используемого топлива.

Кроме того, недостатком известного устройства является невозможность точного регулирования состава рабочей среды, подаваемой в испытательную камеру, который является необходимым параметром для моделирования рабочего процесса при проведении исследований перспективных типов турбомашин.

Задачей изобретения является расширение функциональных возможностей устройства для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин путем моделирования реальных процессов воздействия газовой среды на материал проточных элементов турбомашин.

Техническим результатом данного изобретения является обеспечение точного регулирования химического состава и физических параметров газовой смеси, подаваемой в испытательную камеру.

Технический результат достигается тем, что устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин содержит испытательную камеру с подводящим и отводящим трубопроводами и средствами измерения температуры и парциального давления газовой смеси, источник давления воздуха, подключенный трубопроводом с регулятором расхода воздуха к смесительному ресиверу, предварительный подогреватель воздуха, установленный в трубопроводе подачи воздуха в смесительный ресивер, и регулируемый проточный подогреватель газовой смеси, подключенный входом к смесительному ресиверу, а выходом - к подводящему трубопроводу испытательной камеры, выполненному соплообразным.

Новым в изобретении является то, что устройство снабжено источником давления газа, подключенным к смесительному ресиверу через дополнительный регулятор расхода, и емкостью с поглотителем, подключенной к источнику давления газа через дозатор, а проточный подогреватель газовой смеси снабжен керамическим нагревательным элементом, выполненным в виде цилиндрического полого теплоизолированного корпуса с двумя электродами, разнесенными по длине корпуса, и имеющим завихритель потока, установленный во входной части полости корпуса нагревательного элемента, и рассекатель потока, установленный на выходе из полости корпуса последнего.

В качестве поглотителя могут быть использованы продукты сгорания топлива. Завихритель потока может быть выполнен в виде перегородки с пазами и отверстиями, расположенными тангенциально относительно оси корпуса нагревательного элемента, а рассекатель потока - в виде перфорированной перегородки с калиброванными аксиальными отверстиями. Источник давления воздуха может быть подключен к испытательной камере через дополнительный регулятор расхода воздуха.

Технический результат изобретения достигается за счет всей совокупности существенных признаков устройства, характеризующих взаимосвязи отдельных элементов устройства между собой, их расположение и конструктивное выполнение.

Сущность изобретения поясняется чертежами, где

на фиг.1 показана общая схема устройства для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин;

на фиг.2 - общий вид проточного подогревателя;

на фиг.3 - общий вид завихрителя;

на фиг 4. - общий вид рассекателя.

Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин содержит испытательную камеру 1 с подводящим трубопроводом 2, выполненным в виде сопла, и отводящим трубопроводом 3, в котором размещены средства для оптического измерения температуры 4, а также датчики измерения парциального давления поглотителя 5, полного и статического давления газовой смеси 6 и 7. Для подачи рабочей среды в испытательную камеру 1 устройство имеет источник давления воздуха 8, подключенный трубопроводом 9 с регулятором расхода воздуха 10 к смесительному ресиверу 11.

Для подогрева воздуха перед подачей его в смесительный ресивер 11 в трубопроводе 9 установлен предварительный подогреватель воздуха 12. К смесительному ресиверу 11 через регулятор расхода газовой смеси 13 подключен источник давления газа 14, к которому через дозатор 15 подключена емкость с поглотителем 16. В качестве поглотителя используют продукты сгорания того вида топлива, которое используется в исследуемом двигателе.

В смесительном ресивере 11 установлен газоанализатор 17, а к выходу ресивера 11 подключен регулируемый проточный подогреватель газовой смеси 18, выполненный в виде керамического нагревательного элемента 19 с цилиндрическим полым теплоизолированным корпусом 20 и двумя электродами 21, разнесенными по длине корпуса 20, и имеющий завихритель потока 22, установленный во входной части полости 23 корпуса 20, и рассекатель потока 24, установленный на выходе из полости 23 корпуса 20.

Завихритель потока 22 может быть выполнен в виде перегородки 25 с пазами 26 и отверстиями 27, расположенными тангенциально относительно оси корпуса 20 нагревательного элемента 19, а рассекатель потока 24 - в виде перфорированной перегородки 28 с калиброванными аксиальными отверстиями 29. На выходе регулируемого проточного подогревателя газовой смеси 18 установлена термопара 30 для измерения температуры газовой смеси.

В качестве керамического нагревательного элемента 19 может быть использован высокотемпературный керамический нагревательный элемент ЛАНТЕРМ, изготовленный из керамического материала на основе тугоплавкого электропроводного оксидного соединения - хромита лантана LаСrO3, который позволяет осуществлять резистивный нагрев газовой смеси до температуры 1800°С.

Регулируемый проточный подогреватель газовой смеси 18 выходом подключен к подводящему трубопроводу 2 испытательной камеры 1, выполненному в виде сопла и предназначенному для придания заданной скорости потоку газовой смеси, подаваемой в испытательную камеру 1. Для более точного регулирования скорости потока газовой смеси сопло может быть выполнено регулируемым.

Источник давления воздуха 8 может быть подключен к испытательной камере 1 через дополнительный регулятор расхода воздуха 31 для подмешивания его в испытательной камере 1 в газовую смесь или подачи его к обтекаемым частям исследуемых проточных элементов 32, например, для их охлаждения.

Сигналы от всех измерительных средств (датчиков давления, температуры, газоанализаторов) поступают в блок обработки информации 33, связанный с блоком управления 34, который осуществляет управление исполнительными механизмами 35 устройства в соответствии с программой испытаний.

Работа устройства рассмотрена на примере испытания на долговечность в качестве исследуемого проточного элемента 32 модели жаровой трубы камеры сгорания газотурбинного двигателя.

Перед испытаниями емкость 16 заполняют поглотителем, например дымом с частицами сажи, и подают поглотитель через дозатор 15 в источник давления газа 14, например в баллон с углекислым газом.

При проведении испытаний сжатый воздух от источника давления воздуха 8 через трубопровод 9 с регулятором расхода воздуха 10 и предварительный подогреватель воздуха 12 подается в смесительный ресивер 11, в котором смешивается с газовой смесью, подаваемой под давлением из источника давления газа 14 в смесительный ресивер 11 через регулятор расхода газовой смеси 13. Состав газовой смеси в смесительном ресивере 11 контролируется газоанализатором 17 и может регулироваться по химическому составу в соответствии с программой испытаний с помощью дозатора 15 и регулятора расхода газовой смеси 13.

Из смесительного ресивера 11 газовая смесь поступает в полость 23 корпуса 20 регулируемого проточного подогревателя газовой смеси 18, где поток газовой смеси для повышения эффективности нагрева турбулизируется с помощью завихрителя потока 22 и нагревается до температуры, соответствующей реальным значениям температуры в камере сгорания газотурбинного двигателя. Температура газовой смеси на выходе регулируемого проточного подогревателя газовой смеси 18 контролируется с помощью термопары 30, сигнал от которой подается в блок обработки информации 33, и может регулироваться в соответствии с программой испытаний по сигналу блока управления 34.

Нагретый поток газовой смеси через рассекатель потока 24 направляется в подводящий трубопровод 2 испытательной камеры 1, выполненный в виде сопла, в котором поток ускоряется до требуемых параметров и поступает в полость испытуемой жаровой трубы, установленной в испытательной камере 1. Для моделирования условий работы жаровой трубы в реальном двигателе в условиях полета сжатый воздух от источника давления воздуха 8 подается через дополнительный регулятор расхода воздуха 31 в испытательную камеру 1, омывая наружную поверхность жаровой трубы и частично смешиваясь с потоком газовой смеси в полости жаровой трубы.

Средством оптического измерения температуры 4 через оптическое окно измеряют распределение температуры рабочей среды в испытательной камере 1, а датчиками 5, 6 и 7, установленными в отводящем трубопроводе 3, измеряют распределение парциального и полного давлений, а также статическое давление газа на выходе из жаровой трубы для сравнения этих параметров моделируемого процесса с распределением параметров на выходе из реальной жаровой трубы камеры сгорания турбореактивного двигателя. По результатам обработки этой информации с помощью блока управления 34 вносится коррекция в работу устройства.

Таким образом, после корректировки на выходе из жаровой трубы получают профили температуры, давления газа и парциального давления поглотителя такие же, как в реальной струе продуктов сгорания на выходе из моделируемой камеры сгорания газотурбинного двигателя. Для проведения испытаний проточных элементов турбомашин другого типа, работающих на иных видах топлива, достаточно подобрать определенный состав газа и поглотителя, не внося изменений в конструкцию устройства.


Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин
Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин
Устройство для проведения высокотемпературных газодинамических испытаний проточных элементов турбомашин
Источник поступления информации: Роспатент

Показаны записи 21-30 из 206.
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ef08

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с конусообразным диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного...
Тип: Изобретение
Номер охранного документа: 0002527011
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.11.2014
№216.013.04bb

Способ и устройство для исследования температуропроводности материала

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и...
Тип: Изобретение
Номер охранного документа: 0002532609
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.222f

Электроприводной насос

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня. Электроприводной насос также...
Тип: Изобретение
Номер охранного документа: 0002540204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22e5

Способ и газотурбинная установка для утилизации попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой...
Тип: Изобретение
Номер охранного документа: 0002540386
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ad

Установка для получения газа из гидрата газа

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов,...
Тип: Изобретение
Номер охранного документа: 0002541354
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
Показаны записи 21-30 из 82.
27.07.2014
№216.012.e4e9

Способ получения водорода

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным...
Тип: Изобретение
Номер охранного документа: 0002524391
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e771

Энергетическая установка

Изобретение относится к энергетике. Установка содержит источник водорода высокого давления, две герметичные капсулы, газодинамически связанные между собой, с входным и выходными патрубками, два турбодетандера, два потребителя мощности, основной потребитель водорода и краны, потребитель...
Тип: Изобретение
Номер охранного документа: 0002525042
Дата охранного документа: 10.08.2014
27.08.2014
№216.012.ef08

Камера сгорания непрерывного действия

Камера сгорания непрерывного действия содержит цилиндрический корпус с конусообразным диффузором на входе, установленное на стенке камеры устройство зажигания топливовоздушной смеси и пристыкованную соосно к диффузору на входе горелку. Горелка включает системы подачи жидкого и газообразного...
Тип: Изобретение
Номер охранного документа: 0002527011
Дата охранного документа: 27.08.2014
27.09.2014
№216.012.f6de

Нанокомпонентная энергетическая добавка и жидкое углеводородное топливо

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается...
Тип: Изобретение
Номер охранного документа: 0002529035
Дата охранного документа: 27.09.2014
10.11.2014
№216.013.04bb

Способ и устройство для исследования температуропроводности материала

Группа изобретений относится к области измерительной техники и может быть использована для исследования температуропроводности материалов. Подготовленный для исследования образец подвергают воздействию тепловой и механической нагрузке, в форме осевого одноосного механического растяжения и...
Тип: Изобретение
Номер охранного документа: 0002532609
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0d11

Плазменный двигатель на наночастицах металлов или металлоидов

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для...
Тип: Изобретение
Номер охранного документа: 0002534762
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.222f

Электроприводной насос

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня. Электроприводной насос также...
Тип: Изобретение
Номер охранного документа: 0002540204
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22e5

Способ и газотурбинная установка для утилизации попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, а более конкретно к способу и установке для утилизации попутных нефтяных газов. Способ утилизации попутных нефтяных газов, содержащих сероводород, заключается в сжигании газов в камере сгорания и преобразовании выделяющейся тепловой...
Тип: Изобретение
Номер охранного документа: 0002540386
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26ad

Установка для получения газа из гидрата газа

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов,...
Тип: Изобретение
Номер охранного документа: 0002541354
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
+ добавить свой РИД