×
13.01.2017
217.015.9005

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ

Вид РИД

Изобретение

№ охранного документа
0002605232
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки. В процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности КА в реперной точке, и направлением на Солнце. Измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце. Для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию КА до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры. Выполняют серию снимков реперной точки за выбранный интервал полета. Последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса КА. Техническим результатом изобретения надежное и точное определении деформации корпуса КА.

Изобретение относится к космической технике и может быть использовано для определения величины деформации различных частей корпуса космического аппарата (КА) в полете.

Космические аппараты (спутники, космические корабли, орбитальные станции и т.д.) подвержены деформации на разных этапах, т.е. при их создании, испытаниях, транспортировке, выведении на орбиту и в орбитальном полете. Определение деформаций является важной задачей и ее решению посвящено большое количество работ [1] Телянер Б.Е. и др. Технология ремонта корпуса и судна. Л.: Судостроение. Например, известен патент RU 2380273 С2 на Способ ведения измерений в ходе контроля местных остаточных деформаций корпуса судна [2]. Недостатки известных способов определения деформаций связаны с тем, что их применение не возможно на орбите космического аппарата.

Вместе с тем проблема деформации корпуса космического аппарата в полете является чрезвычайно сложной. Деформация корпуса КА в полете обусловлена двумя основными причинами. Во-первых, перепадом давления внутри КА и снаружи. Во-вторых, изменением температуры на корпусе КА в процессе орбитального движения (вход КА в тень Земли и выход из тени, изменение ориентации КА относительно Солнца). Указанные факторы приводят к деформации корпуса КА и отклонению чувствительных осей установленных на корпусе приборов на 1°-2°. Это является недопустимым при анализе большинства выполняемых научных экспериментов. Поэтому в полете деформации корпуса КА и отклонения чувствительных осей приборов должны быть определены и учтены. С этой целью для определения деформаций во время полета ОК «Мир» был предложен способ [3] Беляев М.Ю., Ефимов Н.И., Банит Ю.Р., Франк Ч., Фойхт У. Определение областей визирования камеры MOMS-2P во время съемок земной поверхности. Труды 31-32 Чтений К.Э. Циолковского. Секция «Проблемы ракетной и космической техники». М., ИИЕТ РАН, 1999, с. 83-94. Предложенный способ-прототип включает определение на борту базовых направлений и измерение углового расстояния между ними. В качестве базовых направлений выбирались направления на звезды, Солнце, Землю. Соответственно использовались звездный, солнечный и др. датчики, входящие в систему ориентации станции. Основным недостатком данного способа является то, что он может быть использован для определения деформации только в месте установки датчика, измеряющего базовое направление. Датчики и приборы стоят только в определенных местах на корпусе КА, и в процессе полета установка новых датчиков и приборов на корпусе КА является чрезвычайно сложной или даже невозможной задачей.

Задачей, на решение которой направлено настоящее изобретение, является определение деформации корпуса КА в местах, не ограниченных установкой приборов измерения базовых направлений.

Технический результат предлагаемого изобретения заключается в повышении надежности и точности определения деформации корпуса КА даже при отсутствии заранее установленных датчиков и приборов, измеряющих базовые направления.

Технический результат достигается тем, что в способе определения деформации корпуса космического аппарата в полете, включающем определение на борту космического аппарата базовых направлений и измерение углового расстояния между ними, фиксируют на внутренней поверхности иллюминатора космического аппарата в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности космического аппарата, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки, в процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности космического аппарата в реперной точке, и направлением на Солнце, измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце, для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию космического аппарата до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры, выполняют серию снимков реперной точки за выбранный для определения деформации корпуса космического аппарата интервал полета, последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса космического аппарата.

За счет выполнения предлагаемых действий определение деформации корпуса КА выполняется надежно, точно и даже при отсутствии измерений от датчиков измерения базовых направлений, установленных на корпусе КА.

Действительно, установив и зафиксировав на внутренней поверхности иллюминатора фотокамеру, можно выполнять обзор внешней поверхности КА. Выбрав на внешней поверхности КА реперные точки, можно выполнить их съемку. Реперными точками могут быть характерные элементы конструкции: концы антенн, части приборов и т.д. Для выполнения съемки требуется обеспечить необходимые условия освещенности фотографируемых элементов конструкции. Фотографируемый элемент конструкции должен быть достаточно освещен. Кроме того, солнечные лучи не должны попадать в поле зрения фотокамеры. Для этого в процессе полета измеряют углы α и β и изменяют ориентацию КА до достижения углами α и β значений, при которых реализуется требуемая освещенность фотографируемой реперной точки. Угол α отсчитывается от плоскости, касательной к внешней поверхности КА в реперной точке. Обычно корпус КА и модули орбитальной станции имеют цилиндрическую форму. Плоскость, относительно которой отсчитывается угол α, также удобнее считать, например, касательной к цилиндрической поверхности, проходящей через реперную точку и имеющей ось симметрии, совпадающую с осью симметрии корпуса КА или модуля орбитальной станции, на которой располагается реперная точка. Заданное значение угла α обеспечивает достаточную освещенность при съемке реперной точки и отсутствие ярко выраженных длинных теней от элементов конструкции. Обычно заданное значение острого угла α составляет значение, превышающее 30°÷40°. Выбор значения угла β также осуществляется для обеспечения благоприятных условий освещенности при фотографировании (Солнце не должно попадать в поле зрения фотокамеры).

После этого выполняют серию снимков реперной точки за выбранный для определения деформации корпуса КА интервал полета. Затем последовательно накладывают полученные снимки реперной точки друг на друга (кадры при съемке лучше делать полупрозрачными). Деформацию корпуса КА определяют по смещению изображения реперной точки на полученных снимках. Современные фотокамеры позволят фиксировать изменение конструктивных элементов до долей миллиметра. Анализируя серию последовательно полученных снимков фотокамерой, жестко закрепленной на иллюминаторе КА, получим величину деформации корпуса КА.

В настоящее время технически все готово для реализации предложенного способа, например, на Международной космической станции МКС. На МКС имеется большой выбор съемочных систем, позволяющих через иллюминатор получать снимки корпуса станции. Объем современного цифрового снимка 20-30 тысяч мегапикселей. Снимки, полученные с помощью используемых на МКС камер Nicon, имеют 6 тысяч пикселей по ширине снимка и 4 тысячи - по высоте. Это значит, что при попадании в кадр фотокамеры элемента конструкции размером 60 см мы получим точность метода 600 мм/6000 пикселей - 0.1 мм/пиксель. То есть на МКС мы сможем измерять и фиксировать деформацию корпуса, имеющую величину 0.1 мм.

Для измерения углов α и β на МКС имеются солнечные датчики. Крепление фотокамер на иллюминаторе может осуществляться с помощью специальных кронштейнов, которые имеются на станции. МКС оборудована большим количеством иллюминаторов, которые обеспечивают возможность обзора практически всей необходимой поверхности корпуса станции. На МКС в распоряжении космонавтов имеются вычислительные средства, персональные компьютеры, которые позволят проводить все необходимые вычисления и последовательно накладывать полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определять деформацию корпуса КА.

Предлагаемый способ позволяет за счет выполнения отличительных действий определять деформацию корпуса КА даже при отсутствии размещения на корпусе КА датчиков, измеряющих базовые направления (на звезды, Солнце и т.д.), т.е. предложенный способ является более универсальным по сравнению с прототипом.

Выбирая реперные точки в различных местах корпуса КА, можно получить полную картину его деформации в полете.

ЛИТЕРАТУРА

1. Телянер Б.Е. и др. Технология ремонта корпуса и судна. Л.: Судостроение.

2. Способ ведения измерений в ходе контроля местных остаточных деформаций корпуса судна. Патент RU 2380273 С.

3. Беляев М.Ю., Ефимов Н.И., Банит Ю.Р., Франк Ч., Фойхт У. Определение областей визирования камеры MOMS-2P во время съемок земной поверхности. Труды 31-32 Чтений К.Э. Циолковского, Секция «Проблемы ракетной и космической техники». М., ИИЕТ РАН, 1999, с. 83-94.

Способ определения деформации корпуса космического аппарата в полете, включающий определение на борту космического аппарата базовых направлений и измерение углового расстояния между ними, отличающийся тем, что фиксируют на внутренней поверхности иллюминатора космического аппарата в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности космического аппарата, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки, в процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности космического аппарата в реперной точке, и направлением на Солнце, измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце, для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию космического аппарата до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры, выполняют серию снимков реперной точки за выбранный для определения деформации корпуса космического аппарата интервал полета, последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса космического аппарата.
Источник поступления информации: Роспатент

Показаны записи 241-250 из 377.
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b57f

Устройство защиты и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения, предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей в фокальной плоскости объектива оптического прибора без...
Тип: Изобретение
Номер охранного документа: 0002614335
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b5f1

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным маневрам космических аппаратов (КА) в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и выведение его на траекторию облета Луны с возвратом. При возвращении к Земле путём нескольких торможений в её...
Тип: Изобретение
Номер охранного документа: 0002614446
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b616

Способ управления транспортной космической системой

Изобретение относится к управлению работой транспортного космического корабля (ТКК), совершающего рейсы между орбитальной космической станцией (ОКС), находящейся вблизи планеты с атмосферой, и базовой станцией, расположенной, например на Луне. После выведения ракетой-носителем на опорную орбиту...
Тип: Изобретение
Номер охранного документа: 0002614466
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b63d

Устройство крепления и расфиксации развертываемых панелей

20 Изобретение относится к средствам фиксации и быстрого дистанционного разделения элементов конструкций космических аппаратов (КА), их частей и других изделий. Устройство содержит узлы крепления панелей и сочленения в виде стаканов с коническими впадинами и выступами, взаимодействующими между...
Тип: Изобретение
Номер охранного документа: 0002614465
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b6f0

Способ управления космическим аппаратом для облёта луны

Изобретение относится к межорбитальным перелётам в системе Земля-Луна. Способ включает отстыковку КА от околоземной орбитальной космической станции (ОКС) и перевод на траекторию перелёта к Луне. Затем КА выводят на селеноцентрическую орбиту. По пребывании там заданное время КА переводят на...
Тип: Изобретение
Номер охранного документа: 0002614464
Дата охранного документа: 28.03.2017
Показаны записи 241-250 из 324.
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e7f

Разъемное соединение

Изобретение относится к разъемным соединениям и предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей, и может быть использовано в машиностроении. В разъемном соединении, состоящем из бортового штуцера с...
Тип: Изобретение
Номер охранного документа: 0002605278
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e93

Способ управления транспортной космической системой

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля...
Тип: Изобретение
Номер охранного документа: 0002605463
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ec0

Импульсная реактивная двигательная установка космического аппарата

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан...
Тип: Изобретение
Номер охранного документа: 0002605163
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ee2

Способ полуавтоматического управления причаливанием

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию...
Тип: Изобретение
Номер охранного документа: 0002605231
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.b50c

Устройство защиты и контроля состояния оптических поверхностей объектива оптического прибора

Заявленное устройство относится к области оптико-электронного приборостроения и предназначено для защиты оптических поверхностей оптических приборов от загрязнений, механических повреждений и контроля состояния оптических поверхностей объектива оптических приборов без демонтажа защитной крышки...
Тип: Изобретение
Номер охранного документа: 0002614352
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b52b

Электрохимический генератор

Изобретение относится к электрохимии, точнее к энергоустановкам с электрохимическими генераторами (ЭХГ). Электрохимический генератор включает батарею топливных элементов и ее систему охлаждения с контуром циркуляции жидкого теплоносителя, включающим охлаждающий теплообменник, установленный на...
Тип: Изобретение
Номер охранного документа: 0002614242
Дата охранного документа: 24.03.2017
+ добавить свой РИД