×
13.01.2017
217.015.8dbb

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике, в частности к моделированию процесса газификации неизрасходованных остатков жидких компонентов ракетного топлива в баках отработанной ступени ракеты-носителя (РН). Общий процесс моделирования разбивают на два этапа. На первом этапе определяют химический состав и физико-химические параметры синтезированного теплоносителя (ТН). На втором этапе определяют коэффициенты тепло- и массоотдачи, состав продуктов газификации по времени. Выбор реальных газогенерирующих составов осуществляют из условий максимальной эффективности бортовой системы газификации. Устройство для реализации способа включает в свой состав экспериментальную установку, содержащую поддон для жидкого КРТ, системы подачи ТН и измерения. В устройство дополнительно введены баллоны, содержащие ТН и химически устойчивые газообразные составляющие ТН, соединенные через регулируемые клапаны с коллектором, соединенным с нагревателем, датчики влажности и скорости потока. Техническим результатом изобретения является приближение условий проведения экспериментов к реальным с возможностью использования экспериментальной базы в научных и учебных целях. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов газификации остатков жидких компонентов ракетного топлива (КРТ) в баках отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) в условиях малой гравитации с использованием экспериментальных установок (ЭУ) в наземных условиях.

Известен способ моделирования процесса газификации (термохимическое обезвреживание), описанный на стр. 163-164 в кн. 1 «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (монография под. ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004 - 220 с.).

Для осуществления способа устройство представляет собой ЭУ, в виде модельного бака, который состоит из обечайки, сферического днища, и содержит поддон с двумя вваренными стаканами, температурные датчики, заправочно-сливную арматуру, датчики давления, дренажный трубопровод, расходомер, весоизмерительное устройство, утилизатор, газоанализатор, основанный на использовании катализатора.

Однако непосредственное использование этого способа и устройства для его реализации для несамовоспламеняющихся КРТ практически невозможно.

Наиболее близким по технической сущности к предлагаемому способу является способ моделирования процесса газификации, защищенный патентом РФ на изобретение №2461890, МПК G09B 23/00, опубл. 20.09.2012.

Способ предусматривает введение в ЭУ газовой струи (теплоносителя, далее ТН) с заданными параметрами, обеспечение заданных условий взаимодействия в зоне контакта газовой струи с поверхностью жидкого газифицируемого КРТ, проведение измерений температуры, давления в различных точках бака, выбор оптимальных параметров подаваемого ТН и условия его ввода выбирают из условия минимума критерия, например энергомассовые затраты, количество тепла, поданного в ЭУ для газификации заданного количества жидкости, формирование заданных граничных условий, утилизацию тепловой энергии, находящейся в газифицированных продуктах, при этом в качестве модельной жидкости используют воду, керосин, ацетон, спиртовую смесь, а в качестве ТН используют воздух, пары воды.

Однако непосредственно использовать этот способ для моделирования термодинамического процесса газификации жидкости теплоносителями с близким химическим составом и физико-химическими параметрами к тем, что будут использоваться в реальном процессе, невозможно.

На практике получение реального ТН связано со сжиганием реальных твердотопливных, жидкостных или гибридных газогенерирующих составов (ГГС), что должно осуществляться непосредственно в процессе газификации, но это практически не реализуемо из-за множества административных, технических и экономических препятствий, а именно, необходимости получения разрешения на работы с взрывчатыми веществами, их хранением, подготовкой соответствующего персонала, существенной модернизации стенда, помещения и т.д. С другой стороны, организация исследования процесса газификации даже в лабораториях, имеющих разрешение на работы с взрывчатыми веществами, связана со значительными затратами. Необходимость проведения многочисленных экспериментов, в том числе по отработке технологии газификации, при выборе оптимальных параметров ТН (температура, массовый секундный расход и углы ввода), различных граничных условий положения жидкости, времени на процесс газификации и т.д. приводит к тому, что число экспериментов может быть значительным, что соответствует большим затратам реальных ГГС, загрязнению окружающей среды. При проведении экспериментов вместо использования реального ТН предлагается использование синтезированного реального ТНср, а для отработки всех процессов использовать модельный ТНм.

Заявляемое техническое решение направлено на снижение затрат при проведении экспериментальных исследований, приближение условий проведения экспериментов к реальным, с возможностью использования экспериментальной базы не только в научных, но и в учебных целях.

Указанный технический результат достигается за счет того, что в способе моделирования процесса газификации остатков жидкого КРТ в баках ОЧ ступени РН, включающем введение в ЭУ газовой струи с заданными параметрами, обеспечение заданных условий взаимодействия в зоне контакта газовой струи с поверхностью жидкого газифицируемого КРТ, проведение измерений температуры, давления в различных точках бака, согласно заявляемому изобретению общий процесс моделирования разбивают на два этапа, при этом на первом этапе осуществляют сжигание реальных ГГС для газификации данного КРТ, например керосина, определяют химический состав и физико-химические параметры реального ТНср, а затем определяют химический состав и физико-химические параметры модельного ТНм, например, на основе смесей воздуха, азота, монооксида и диоксида углерода, воды для отработки процесса газификации КРТ в ЭУ, на втором этапе нагревают ТНм до заданной температуры ТЭУ, выбранной из условия теории подобия и достижимой для данной ЭУ, направляют в ЭУ, отрабатывают схемы подачи ТНм, схемы размещения испаряемой жидкости в ЭУ, систему измерения (датчики влажности, скорости потока ТНм), определяют коэффициенты тепло и массоотдачи и, после получения достоверных результатов, формируют ТНср путем смешения газов из автономных баллонов в соответствии с концентрацией, определенной на первом этапе, нагревают до температуры, реализуемой ЭУ, подают в ЭУ и определяют коэффициенты тепло- и массоотдачи, состав продуктов газификации по времени.

Выбор реальных ГГС осуществляют из условий максимальной эффективности бортовой системы газификации невырабатываемых остатков КРТ, устанавливаемой на борту ОЧ, например, с использованием критерия минимальной массы ГГС,

Минимальное количество модельного теплоносителя для подачи заданного количества теплоты в ЭУ, требуемого для испарения заданной массы КРТ, определяют из условия:

где

Q0 - тепло, выделяемое газообразными продуктами при сжигании реальных ГГС массой 1 кг и при охлаждении ТНср, от начальной температуры до температуры газификации КРТ, например керосина,

Q1 - тепло, получаемое при охлаждении ТНм от температуры, получаемой в нагревателе ТЭУ, до температуры, при которой происходит газификация КРТ, например керосина,

- количество ТНср, необходимого для испарения заданной массы КРТ, с использованием реального ГГС.

Перед подачей ТН (ТНм или ТНср) с температуры ТЭУ в ЭУ, предварительно проводят прогрев соединительной и запорной арматуры горячим воздухом для снижения затрат ТН на нагрев до температуры ТЭУ.

Перед подачей ТН (ТНм или ТНср) с температурой ТЭУ в ЭУ предварительно заполняют ЭУ газом гелием, имитирующим наддув бака, до заданного давления.

Технический результат в части устройства достигается за счет того, что в устройство, включающее в свой состав ЭУ, содержащую поддон для жидкого КРТ, систему подачи газового потока, датчики температуры, давления и расхода, дренажный трубопровод с дренажно-предохранительным клапаном, утилизатор, газоанализатор, компрессор, ресивер, теплоэлектронагреватель, теплообменник, последовательно соединенные с помощью арматуры с теплоизолирующим покрытием, дополнительно вводят баллоны, содержащие химически устойчивые газообразные составляющие продуктов сгорания реальных ГГС - ТНср и модельный ТНм, соединенные через регулируемые клапаны с коллектором, соединенным с нагревателем, датчики влажности и скорости потока ТН.

Предложенное техническое решение осуществляется следующим образом.

Общий процесс моделирования газификации разбивают на два этапа, которые реализуются на экспериментальных стендах (ЭС), территориально размещенных в разных местах.

На первом этапе осуществляют:

1) сжигание реальных ГГС для газификации КРТ, определение химического состава и физико-химических параметров продуктов сгорания ТНР.

Выбор реальных ГГС для использования в экспериментальных исследованиях осуществляют из условий эффективности бортовой системы газификации невырабатываемых остатков КРТ, устанавливаемой на борту ОЧ, например минимальной массы (см., например: Трушляков В.И., Лемперт Д.Б., Белькова М.Е. Исследование возможности испарения остатков жидкого топлива в баках ступеней ракет // Омский научный вестник. - 2014, №2(130), с. 52-57, где приведены различные ГГС и рекомендации по их выбору);

2) определяют возможный химический состав и физико-химические параметры модельного теплоносителя ТНм для отработки процесса газификации, например керосина в ЭУ, например, на основе смесей воздуха, азота, монооксида и диоксида углерода, паров воды.

Химический состав модельного ТНм выбирается из условий доступности, стоимости, возможности определения его концентрации в продуктах газификации существующим приборным составом, например, при использовании в качестве ТМм воздуха, азота, а в качестве модельной жидкости - воды, выделение в составе продуктов газификации процентного содержания воды, ТНм и газа наддува (воздух) - невозможно, т.к. наличие воды будет присутствовать в Тм и газе наддува.

На втором этапе осуществляют:

1) предварительный прогрев соединительной и запорной арматуры, заполнение гелием ЭУ до заданного давления, подачу нагретого ТНм до температуры ТЭУ в ЭУ, отрабатывают схемы подачи ТНм, схемы размещения испаряемого КРТ в ЭУ, систему измерения, после получения достоверных результатов, ТНм, а необходимое количество для подачи заданного количества тепла в ЭУ, необходимой для испарения заданной массы КРТ, определяют из условия (1).

Например, при сгорании пороха С6Н7,41N2,58О10 (энтальпия образования ΔH°f=-600 kJ/kg) при давлении 2 атм температура горения Ткр=3074 K. При его охлаждении до температуры Т=570 K (300°С) энтальпия образования продуктов сгорания составит ΔH°f=-7430 kJ/kg. Следовательно, выделилось тепло в количестве Q0=6830 kJ/kg.

Аналогичный расчет для азота показывает, что будучи нагретым до 1270 K (1000°С), а затем охлажденным до 570 K (300°С), в процессе охлаждения от 1270 до 570 K выделится тепло ΔQ1=800 kJ/kg.

В результате расчета по (1) получаем, что при охлаждении 6830/800=8.53 кг азота от 1000°С до тех же 300°С, в ЭУ поступит такое же количество тепла, как и при сгорании 1 кг пороха, с последующим охлаждением продуктов его сгорания до 300°С.

Таким образом, определив количество тепла, которое нужно для испарения заданного количества КРТ, и потребное количество реального ГГС , по (1) можно определить количество . При расчете потребного количества тепла необходимо учитывать все тепловые потери;

2) формируют реальный ТНср путем смешения газов из автономных баллонов в соответствии с концентрациями, определенными на первом этапе, нагревают ТНср до температуры ТЭУ и подают в ЭУ. Затем определяют коэффициенты тепло- и массоотдачи, изменение состава продуктов газификации во времени.

Сущность технического решения поясняется чертежом, где на фиг. 1 изображена пневмогидравлическая схема экспериментального стенда.

В ЭУ 1 вводят струю ТН (ТНм или ТНср) с заданными параметрами (химический состав, расход, давление и температура), определенными заранее. Для этого производят запуск экспериментального стенда (фиг. 1).

Перед подачей ТН (ТНм или ТНср) с температурой ТЭУ в ЭУ, предварительно проводят прогрев соединительной и запорной арматуры горячим воздухом для снижения затрат ТН на нагрев до температуры ТЭУ.

Для этого предварительно закрываются все вентили, кроме вентилей 2-4, и включаются все электроприборы и оборудование. Воздух нагнетается компрессором 5 через вентили 2-4 и заполняет ресивер, состоящий из двух баллонов 6.

После достижения в ресивере 6 определенного давления (до 10-16 атм), измеряемого с помощью манометра 7, открываются последовательно вентили 8 и 9 и воздух попадает во влагоотделитель 10. Далее, проходя через систему фильтрации 11, которая представляет собой блок фильтров, и предохранительный пневмоклапан 12 с датчиком давления, по которому устанавливается рабочее давление, воздух поступает в нагреватель 13, который регулируется с помощью трансформатора 14.

В нагревателе воздух достигает заранее заданной температуры и через вентиль 15 и 16 сбрасывается через теплообменник 17 в выхлопной патрубок (утилизатор), при этом происходит прогрев соединительной и запорной арматуры до температуры, определяемой по датчику температуры 18.

После прогрева соединительной и запорной арматуры компрессор 5 выключается, вентили 2-4, 8-9 закрываются, открывается вентиль 19 и ЭУ 1 заполняется газом гелием из баллона 20 до заданного давления, определяемого по датчику давления 21.

Осуществляется подача ТНм в ЭУ 1 из баллона 22 через дренажно-предохранительный клапан 23, редуктор 24, дроссель 25 и нагреватель 13.

Отрабатывают схемы подачи ТНм, схемы размещения испаряемого КРТ в ЭУ, систему измерения.

Осуществляется подача ТНср в ЭУ 1. Для этого открываются вентили 26 и газы из баллонов 27 через дренажно-предохранительные клапаны 28, редукторы 29 и дроссели 30 поступают в коллектор 31, в котором смешиваются. Количество баллонов 27 зависит от количества компонентов, необходимых для моделирования реального ТНР. Необходимое соотношение компонентов задается с помощью редукторов 29 и дросселей 30. Полученный ТНср через вентиль 32 по нагретой соединительной и запорной арматуре поступает в нагреватель 13, который регулируется с помощью трансформатора 14. Расход ТНср определяется расходомером 33, а температура на входе в ЭУ датчиком температуры 18.

Расход теплоносителя, величина которого определена задачами и условиями проведения эксперимента, задают расходомером 33.

ТНр поступает в ЭУ, выходные параметры газифицированной жидкости контролируют датчиками температуры 31 и давления 21.

С использованием мобильных датчиков температуры 34, скорости потока ТН 35 и влажности воздуха в ЭУ 36 определяют параметры процесса газификации жидкости.

Предохранительный пневмоклапан 37 обеспечивает надежность систем ЭУ (по величине избыточного давления). По выхлопному трубопроводу газифицированные продукты, проходя через теплообменник, поступают в утилизатор.


СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГАЗИФИКАЦИИ ОСТАТКОВ ЖИДКОГО КОМПОНЕНТА РАКЕТНОГО ТОПЛИВА В БАКАХ ОТДЕЛЯЮЩЕЙСЯ ЧАСТИ СТУПЕНИ РАКЕТЫ-НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 161-163 из 163.
17.02.2018
№218.016.2a00

Способ спуска отделяющейся части ракеты-носителя

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет...
Тип: Изобретение
Номер охранного документа: 0002643073
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a78

Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации,...
Тип: Изобретение
Номер охранного документа: 0002643020
Дата охранного документа: 29.01.2018
29.05.2018
№218.016.5565

Динамический гаситель колебаний

Изобретение относится к области машиностроения. Динамический гаситель колебаний содержит корпус. Инерционная масса расположена внутри корпуса в виде рабочей жидкости (6). Рабочая жидкость заключена в резинокордную оболочку (2) и сообщена с входными отверстиями инерционных трубок (3). Выходные...
Тип: Изобретение
Номер охранного документа: 0002654241
Дата охранного документа: 17.05.2018
Показаны записи 171-180 из 184.
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
13.06.2019
№219.017.81a7

Способ фазовой стабилизации нитрата аммония

Изобретение относится к способу получения нитрата аммония со структурой, стойкой к изменению температуры. Предложен способ фазовой стабилизации нитрата аммония, включающий введение органического вещества-стабилизатора. Вещество-стабилизатор выбирают из группы азотсодержащих гетероциклов с...
Тип: Изобретение
Номер охранного документа: 0002298540
Дата охранного документа: 10.05.2007
19.06.2019
№219.017.8a54

Способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления

Изобретение относится к ракетно-космической технике. Способ увода на орбиту утилизации отделяющейся части ракеты-носителя (ОЧРН). ОЧРН придают вращение вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, затем газифицируют остатки жидких невыработанных...
Тип: Изобретение
Номер охранного документа: 0002406856
Дата охранного документа: 20.12.2010
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9f36

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретения относятся к ракетно-космической технике, в частности к ракетам-носителям на жидком топливе, а именно к отделяющейся части ракеты космического назначения на жидких компонентах топлива и к способу спуска ее в заданный район. Способ спуска отделяющейся части ракеты космического...
Тип: Изобретение
Номер охранного документа: 0002414391
Дата охранного документа: 20.03.2011
02.10.2019
№219.017.cded

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат – снижение районов падения отделяемых частей путем их сжигания на атмосферном участке траектории спуска....
Тип: Изобретение
Номер охранного документа: 0002700150
Дата охранного документа: 12.09.2019
08.11.2019
№219.017.df4d

Головной обтекатель ракеты-носителя

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны,...
Тип: Изобретение
Номер охранного документа: 0002705258
Дата охранного документа: 06.11.2019
19.12.2019
№219.017.ef44

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина предусматривает подачу источника тепловой энергии из отдельной ёмкости (8) в баки (2, 3) с остатками компонентов топлива в жидкой (4, 5) и газообразной фазах, газа...
Тип: Изобретение
Номер охранного документа: 0002709291
Дата охранного документа: 17.12.2019
11.07.2020
№220.018.3194

Способ спуска отделяющейся части ступени ракеты-носителя и устройство для его осуществления

Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации...
Тип: Изобретение
Номер охранного документа: 0002726214
Дата охранного документа: 09.07.2020
+ добавить свой РИД