×
13.01.2017
217.015.8cf1

Результат интеллектуальной деятельности: СПОСОБ КОНТАКТНОЙ ЛИТОТРИПСИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, хирургии. Осуществляют воздействие на конкремент при контактной литотрипсии. На дистальный конец световода наносят поглощающий, термостойкий, износоустойчивый слой. Используется лазерное излучение, поглощающееся в специально нанесенном на торец волокна слое. В составе пленки, формирующей названный слой, может быть сополимерный композит или дисперсия углеродных нанотрубок. Проплавление конкремента в месте контакта со световодом происходит под действием высокой температуры. Генерируемый при этом ультразвук частотой до 1 МГц обеззараживает место воздействия, уменьшает выход бактериальной флоры из биопленок, содержащихся в конкременте. Способ упрощает технологию подготовки литотриптеров, повышает эффективность литотрипсии. 8 з.п. ф-лы.

Изобретение относится к медицине, а именно к урологии, и может быть использовано для контактной лазерной литотрипсии камней в полостях, заполненных жидкостью, например в мочеточнике, мочевом пузыре, уретре и др.

Контактная литотрипсия - это разрушение камней с помощью различных инструментов и методов, при котором происходит непосредственный контакт инструмента и камня в организме пациента. Существует несколько видов контактных литотриптеров: электрогидравлический, ультразвуковой, пневматический, электрокинетический, лазерный.

В электрогидравлических литотриптерах используются высокоэнергетические разряды тока на верхушке электрода. Они образуют пузырьки, которые затем схлопываются и создают акустическое давление или ударную волну. Высокое давление и тепло образуются на расстоянии 5 мм от кончика электрода, при этом необходимо соблюдать осторожность, так как имеется высокий риск перфорации мочеточника. В электродах меньшего диаметра используется низкий вольтаж, что снижает эффективность, и, соответственно, лечение твердых камней может быть затруднено.

Ультразвук. В цельном металлическом зонде образуются продольные вибрации, за счет прохождения высокоэнергетичного тока через пьезокерамическое вещество. В результате этого активированные кристаллы образуют ультразвуковую волну (20-27 кГц), которая воздействует на стальной зонд, образуя высокочастотные синусоидальные вибрации. За счет этих вибраций зонд воздействует на камень как «отбойный молоток», разрушая его в точке воздействия. Зонд охлаждается за счет ирригации жидкости, фрагменты камня удаляются через полость трубки за счет использования всасывающего насоса.

Для механического разрушения камней используются или воздушные компрессоры, или миниатюрные устройства с электромагнитными ударно-волновыми эмиттерами для создания движущей силы. Сила разрушения пропорциональна длительности энергетического импульса и амплитуде движения. Последующий эффект «отбойного молотка» может приводить к нежелательному движущему воздействию, которое может проявляться в продвижении камня вверх по мочеточнику и в почку, что делает камень не достижимым для уретроскопа, или камень может недостаточно фрагментироваться. Попытаться нейтрализовать этот эффект можно с помощью применения вместе с зондом отсасывающих устройств или корзин Дормиа.

Импульсный лазер на красителе. Энергия лазера с длиной волны 520 нм передается через кварцевое волокно и поглощается камнем. Это техника недостаточно эффективна по отношению к цистиновым камням и камням из моногидрата оксалата кальция, так как они плохо поглощают излучение лазера с такой длиной волны. В месте воздействия образуются пузырьки, которые, увеличиваясь и схлопываясь, образуют волну акустического давления, ударную волну. Краситель сделан из разлагающегося материала и может нуждаться в замене каждые несколько недель. Краситель необходим для создания определенной длины волны лазерного излучения.

Гольмиевый лазер. Излучение гольмиевого лазера на иттриево-алюминиевом гранате (Ho:YAG) приводит к вапоризации камня при прямом контакте волокна с камнем. Этот полупроводниковый лазер передает э.м. энергию с длиной волны 2100 нм через кварцевое волокно низкой плотности диаметром 200-1000 мкм. В результате образуется ударная волна за счет увеличения и затухания пузырьков, так как жидкость, находящаяся в фокусе системы, испаряется во время лазерного импульса. Дальнейшая передача энергии происходит через эти полости с паром, что называется эффектом Мозеса. Лазерная литотрипсия не приводит к ретроградному смещению камня и миграции его в почку, что нередко происходит при пневматической литотрипсии.

По патенту RU 2334486 (МПК A61B 18/22 (2006.01)) от 19.06.2006 г. известен способ контактной лазерной литотрипсии. Изобретение относится к области медицины и предназначено для удаления камней из желчных протоков. К конкременту подводят лазерный световод и производят лазерную контактную литотрипсию с помощью излучения YAG-Ho лазера с длиной волны 2,09 мкм в импульсном режиме с частотой 5-10 Гц и энергией излучения 0,5-1,0 Дж.

Ближайшим аналогом разработанного способа является способ контактной литотрипсии камней мочеточника, мочевого пузыря и уретры, известный по патенту RU 2294165 (МПК A61B 17/225 (2006.01)) от 07.06.2005 г. Изобретение относится к медицине, а именно к урологии, и касается способа контактной литотрипсии камней мочеточника, мочевого пузыря и уретры. В данном способе воздействуют на камень импульсом энергии с частотой следования импульсов 1-5 Гц и длительностью фронта импульса не более 100 нс.

Недостатком известных способов являются ограничения, накладываемые на тип используемых лазеров. В результате конструкции получаются дорогостоящими и сложными в изготовлении. К тому же разрушение конкремента происходит путем дробления его на фрагменты, в результате чего «разлетаются» содержащие биопленки с патогенной микрофлорой осколки конкремента, механически травмируя окружающую ткань почки (лоханки, мочеточника).

Задачей, на решение которой направлено данное изобретение, является разработка способа контактной литотрипсии, при котором не будет ограничений на тип используемого лазера, что значительно упростит и удешевит технологию изготовления литотриптеров, а также разработка способа контактной литотрипсии, который в процессе разрушения конкремента обеспечит обеззараживание места воздействия на конкремент.

Указанный технический результат достигается благодаря тому, что разработанный способ контактной литотрипсии так же, как и способ, который является ближайшим аналогом, включает воздействие на конкремент световой энергией через световод, разрушение конкремента.

Новым в разработанном способе контактной литотрипсии является то, что на дистальный конец световода наносят поглощающий от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкий, износоустойчивый слой, в результате чего разрушение конкремента производят за счет тепловой энергии, то есть происходит проплавление конкремента, кроме того, под действием высокой температуры в месте контакта световода и конкремента генерируется высокочастотный ультразвук с частотой до 1 МГц, который обеззараживает место воздействия на конкремент, уменьшая выход бактериальной флоры из биопленок, содержащихся в конкременте.

В первом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат для формирования пленки гибридного органо-неорганического сополимера. Особенностью является потемнение наконечника при прохождении УФ света. Температура эксплуатации до 300°C.

Во втором частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации и прекурсор наночастиц серебра - AgNO3. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат для формирования пленки нанокомпозита наночастиц серебра в органо-неорганическом сополимере. Дистальный конец световода подвергают УФ-облучению для формирования наночастиц серебра и почернения сополимера. Особенность - получаемый поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкий, износоустойчивый слой обладает ярко выраженными бактерицидными свойствами. Температура эксплуатации до 300°C.

В третьем частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют гель полититаноксида в среде метакрилового мономера, содержащий инициатор радикальной полимеризации и наночастицы серебра. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в гель и помещают в термостат до формирования пленки нанокомпозита - органо-неорганического сополимера, содержащего наночастицы серебра. Температура эксплуатации до 300°C.

В четвертом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют раствор полиакрилонитрила (пАН) в диметилформамиде (ДМФА). Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в раствор и помещают в термостат для формирования пленки. Для получения термостойкого пАН черного цвета выполняют термообработку дистального конца световода при температуре 600-800°C. Температура эксплуатации до 600°C.

В пятом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию сажи марки К-354 (технический углерод) в растворе пАН в ДМФА. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения сажи по дистальному концу световода, и высушивают в термостате. Проводят термообработку при температуре 600-800°C. Термостойкость покрытия до 800°C.

В шестом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию углеродных нанорубок (УНТ) марки «Таунит-М» в растворе пАН в ДМФА. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения УНТ по дистальному концу световода, и высушивают в термостате. Проводят термообработку при температуре 600-800°C для превращения пАН в термостойкий полимер темного цвета. Термостойкость покрытия до 800°C.

В седьмом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию сажи марки К-354 (технический углерод) в жидком стекле. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения сажи по дистальному концу световода, и высушивают в термостате. Затем опускают дистальный конец световода в дистиллированную воду для экстракции щелочи, исходно присутствующей в жидком стекле. Термостойкость покрытия до 1000°C.

В восьмом частном случае реализации разработанного способа контактной литотрипсии в качестве поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя используют дисперсию УНТ марки «Таунит-М» в жидком стекле. Для получения поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя дистальный конец световода опускают в дисперсию, добиваясь равномерного распределения УНТ по дистальному концу световода, и высушивают в термостате. Затем опускают дистальный конец световода в дистиллированную воду для экстракции щелочи, исходно присутствующей в жидком стекле. Термостойкость покрытия до 1000°C.

Таким образом, нанесение на дистальный конец световода поглощающего от 30% до 99% излучаемой мощности в диапазоне от ближнего УФ до среднего ИК диапазона, термостойкого, износоустойчивого слоя позволяет использовать разнообразные типы лазеров в литотриптерах, что значительно упрощает и удешевляет технологию их изготовления.

В результате того, что разрушение конкремента производят за счет тепловой энергии, происходит проплавление конкремента, а не дробление с «разбрасыванием осколков», механически травмирующих окружающую ткань. К тому же, разрушение камня во время операции может явиться пусковым механизмом активации роста микроорганизмов, интегрированных в биопленку. Миграция бактерий в сосудистое русло может вызвать септические осложнения (статья «К вопросу об инфекционном генезе камней (электронно-микроскопическое исследование)», ж. Урология №3 - 2012, стр. 4-7, авторы Диденко Л.В., Перепанова Т.С., Толордава Э.Р. и др.).

Из статьи Астаховой С.А. «Обеззараживание воды высокочастотным ультразвуком» (Вестник ВСГУТУ №4 - 2013 от 25 августа, стр. 164-167) известно, что при высоких температурах около 0,01% молекул воды внутри пузырька диссоциируют на водородные и гидроксильные радикалы, также образуются пероксильные радикалы и происходит рекомбинация радикалов с образованием пероксида водорода. Гидроксильный радикал считается наиболее важным окисляющим агентом, обеспечивающим инактивацию клетки.

Таким образом, под действием высокой температуры (от 300°C до 1000°C) в месте контакта световода и конкремента генерируется высокочастотный ультразвук с частотой до 1 МГц, который обеззараживает место воздействия на конкремент, уменьшая выход бактериальной флоры из биопленок, содержащихся в конкременте.

Источник поступления информации: Роспатент

Показаны записи 71-71 из 71.
16.06.2023
№223.018.7c6b

Способ непрерывного мониторинга уровня глюкозы в биологической жидкости организма и устройство для его реализации

Группа изобретений относится к медицине, а именно к способу и устройству непрерывного мониторинга уровня глюкозы. При исполнении способа калибруют устройство непрерывного мониторинга уровня глюкозы с учетом величин температуры и кислотности исследуемой биологической жидкости. Размещают его в...
Тип: Изобретение
Номер охранного документа: 0002749982
Дата охранного документа: 21.06.2021
Показаны записи 41-46 из 46.
18.10.2019
№219.017.d7a8

Способ получения низкомолекулярного олигомерного хитозана и его производных

Изобретение относится к области химии биополимеров. Способ получения низкомолекулярного олигомерного хитозана предусматривает растворение хитозана в водном растворе кислоты, в качестве которой используют или уксусную, или соляную, или янтарную, или аскорбиновую, или никотиновую, или бензойную...
Тип: Изобретение
Номер охранного документа: 0002703437
Дата охранного документа: 16.10.2019
23.02.2020
№220.018.05ec

Трехмерный пористый композитный материал и способ его получения

Группа изобретений относится к химии высокомолекулярных соединений и касается трехмерного пористого композиционного материала и способа его получения. Трехмерный пористый композитный материал характеризуется тем, что содержит композиционный каркас, имеющий в качестве полимерной матрицы соль...
Тип: Изобретение
Номер охранного документа: 0002714671
Дата охранного документа: 19.02.2020
22.04.2020
№220.018.170d

Способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Предложен способ получения биоактивного покрытия c бактерицидными свойствами на имплантате из титана, включающий обезжиривание и последующее активирование поверхности имплантата из титана. Покрытие наносят...
Тип: Изобретение
Номер охранного документа: 0002719475
Дата охранного документа: 17.04.2020
12.07.2020
№220.018.31fb

Способ измерения in situ спектра экстинкции прозрачного образца в фотохимическом процессе

Изобретение относится к области измерительной техники и касается способа измерения in situ спектра экстинкции прозрачного образца в фотохимическом процессе. Способ включает в себя облучение оптическим излучением прозрачного образца в рабочем положении в экспериментальной установке, последующий...
Тип: Изобретение
Номер охранного документа: 0002726271
Дата охранного документа: 10.07.2020
12.04.2023
№223.018.48b4

Способ нейрофизиологического исследования моторной порции полового нерва при пудендоневропатиях

Изобретение относится к медицине, а именно к неврологии и функциональной диагностике, и может быть использовано для нейрофизиологического исследования моторной порции полового нерва при пудендоневропатиях. Проводят нейрофизиологическое исследование ответа на магнитную стимуляцию, анализ...
Тип: Изобретение
Номер охранного документа: 0002761931
Дата охранного документа: 14.12.2021
17.06.2023
№223.018.7ed7

Способ получения биоактивного покрытия с бактерицидными свойствами на имплантате

Изобретение относится к области медицины и конкретно касается получения биоактивного, антибактериального адгезионно прочного покрытия на имплантате из титана или его сплавов. Способ получения биоактивного покрытия с бактерицидными свойствами на имплантате включает обезжиривание и активацию...
Тип: Изобретение
Номер охранного документа: 0002774836
Дата охранного документа: 23.06.2022
+ добавить свой РИД