×
13.01.2017
217.015.8b89

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ОГНЕСТОЙКОСТИ СТАЛЬНОЙ ФЕРМЫ ЗДАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области пожарной безопасности зданий и сооружений. Сущность:осуществляютпроведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева их поперечных сечений; установление марки стали фермы, характеристик металла сопротивлению на сжатие и растяжение, определение величины нагрузки оценочного испытания на стальную ферму, схем ее приложения, интенсивности силовых напряжений в металле в опасных сечениях элементов стальной фермы, определение времени наступления предельного состояния по признаку потери несущей способности элементов стальной фермы под испытательной нагрузкой оценочного огневого испытания. Оценку огнестойкости стальной фермы здания проводят без натурного огневого воздействия неразрушающими методами испытаний, используя комплекс единичных показателей качества стальных конструкций. Назначают число и место расположения участков, в которых определяют единичные показатели качества, при этом технический осмотр дополняют определением группы однотипных стальных ферм. За единичные показатели качества принимают геометрические характеристики элементов фермы, степень напряжения и предел текучести металла, затем определяют интегральные конструктивные параметры: интенсивность нормальных силовых напряжений в поперечном сечении элементов стальной фермы в условиях оценочного огневого испытания; приведенную толщину металла поперечного сечения элементов стальной фермы, и, употребляя их, определяют проектное время сопротивления термосиловому воздействию каждого элемента стальной фермы по потере несущей способности, используя аналитическое выражение. Проектный предел огнестойкости стальной фермы (F, мин) определяют по длительности сопротивления до потери несущей способности наиболее слабого с точки зрения огнестойкости элемента (τ, мин) в условиях оценочного огневого испытания.Технический результат:возможность определения огнестойкости стальной фермы здания без натурного огневого воздействия, повышение достоверности статистического контроля качества и неразрушающих испытаний, уменьшение расходов металла на изготовление стальной фермы, сокращение сроков проведения испытаний, снижение экономических затрат. 15 з.п. ф-лы, 1 табл., 4 ил.

Изобретение относится к области пожарной безопасности зданий и сооружений, далее - зданий. В частности, оно может быть использовано для классификации стальных ферм зданий по показателям сопротивления их воздействию пожара. Это дает возможность обоснованного использования стальных ферм с фактическим (проектным) пределом огнестойкости в зданиях различных классов по их пожароопасности.

Необходимость определения показателей огнестойкости стальных ферм возникает при строительстве и реконструкции здания, усилении его частей и элементов, приведении огнестойкости стальных ферм в соответствие с требованиями современных строительных норм, при проведении экспертизы и/или восстановлении конструкций здания после пожара.

Известен способ оценки огнестойкости стальных ферм здания по результатам изучения последствий натурного пожара. Этот способ включает определение положения конструкции в здании, оценку состояния конструкции путем осмотра и измерения, изготовление контрольных образцов строительной стали, определение времени наступления предельного состояния по потере несущей способности конструкции, то есть обрушения в условиях действия внешней нагрузки и огневого воздействия натурного пожара /Ильин Н.А. Техническая экспертиза зданий, поврежденных пожаром. М.: Стройиздат, 1983, с. 90-91, 131, 134/ [1].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе пределы огнестойкости определяют приближенно по результатам исследования последствий прошедшего пожара. Детальное исследование предопределяет длительную работу эксперта. При этом невозможно определить огнестойкость натурных конструкций, имеющих другие размеры и другую внешнюю нагрузку. Затруднительно сопоставление полученных результатов со стандартными огневыми испытаниями аналогичных конструкций. Следовательно, этот способ дорог, имеет малую технологическую возможность к повторным испытаниям, трудоемок и опасен для испытателей.

Известен способ оценки огнестойкости стальных ферм по результатам натурных огневых испытаний фрагмента здания, в котором производят осмотр конструкций, определяют марку стали, назначают испытательную нагрузку на конструкцию соответственно реальным условиям эксплуатации здания, определяют факторы, влияющие на огнестойкость испытуемой конструкции, и величину фактического предела огнестойкости/ГОСТ Ρ 53309.2009. Здания и фрагменты зданий. Метод натурных огневых испытаний. Общие требования/ [2].

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе велики экономические затраты на проведение огневых испытаний, наблюдение за состоянием конструкций в условиях экспериментального пожара затруднено и небезопасно, вследствие различий теплового режима натурного и стандартного пожаров затруднено определение истинных значений пределов огнестойкости конструкций, причины разрушения стальных ферм фрагмента могут быть не установлены вследствие многообразия одновременно действующих факторов пожара. Предельное состояние по огнестойкости стальных ферм может быть не достигнуто из-за более раннего разрушения элементов покрытия или стен фрагмента /Огнестойкость зданий. В.П. Бушев, В.А. Пчелинцев, B.C. Федоренко, А.И. Яковлев. М.: Стройиздат, 1970, с. 112; 252-256/ [3].

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ оценки огнестойкости стальных ферм здания путем неразрушающего испытания, включающего проведение технического осмотра, установление сортамента и марки стали, выявление условия опирания и крепления концов стальных ферм, определение времени наступления предельного состояния по признаку потери несущей способности конструкции под испытательной нагрузкой в условиях стандартного теплового воздействия /ГОСТ 30247.1-94. Конструкции строительные. Методы испытания на огнестойкость. Несущие и ограждающие конструкции/ [4] - принят за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, принятого за прототип, относится то, что в известном способе испытания проводят на образце конструкции, на который воздействуют постоянные и длительные нагрузки в их расчетных значениях с коэффициентом надежности, равным единице, то есть проектные нормативные нагрузки.

Испытания проводят на специальном стендовом оборудовании в огневых печах до разрушения образцов конструкций. Размеры образцов ограничивают в зависимости от проемов стационарных печей. Следовательно, стандартные огневые испытания трудоемки, не эффективны, не безопасны, имеют малые технологические возможности для проверки на опыте различных по размерам и различно нагруженных конструкций, не дают необходимой информации о влиянии единичных показателей качества стальной конструкции на ее огнестойкость. Определение огнестойкости стальной фермы по единичному показателю качества, например по толщине металла, как правило, недооценивает пригодность эксплуатации конструкции в здании заданной степени огнестойкости. Экономические затраты на проведение испытаний возрастают за счет расходов на демонтаж стальной фермы, транспортирование к месту установки нагревательных печей и на создание в них стандартного теплового режима. По малому числу испытуемых образцов (2-3 шт.) невозможно судить о действительном состоянии стальной фермы здания. Результаты огневого испытания единичны и не учитывают разнообразия в закреплении концов элементов решетки фермы, их фактических размеров, фактической схемы обогрева опасного сечения испытуемой конструкции в условиях пожара.

Сущность изобретения заключается в установлении показателей пожарной безопасности здания в части гарантированной длительности сопротивления стальной конструкции в условиях пожара; в определении проектного предела огнестойкости стальной фермы при проектировании, строительстве или эксплуатации здания; в снижении экономических затрат при испытании конструкций на огнестойкость.

Технический результат - устранение натурных огневых испытаний конструкции в здании или его фрагменте; снижение трудоемкости определения огнестойкости конструкций; расширение технологических возможностей определения проектной огнестойкости различно нагруженных конструкций любых размеров и возможность сопоставления полученных результатов с испытаниями аналогичных конструкций здания; возможность проведения испытания конструкций на огнестойкость без нарушения функционального процесса в здании; снижение экономических затрат на испытание; сохранение эксплуатационной пригодности здания при обследовании и неразрушающих испытаниях конструкций; упрощение условий и сокращение сроков испытания конструкций на огнестойкость; повышение точности и экспрессивности испытания; использование интегральных конструктивных параметров для определения огнестойкости конструкций и упрощение математического описания процесса термического сопротивления нагруженных конструкций; повышение достоверности результатов испытаний; учет реального ресурса конструкции по огнестойкости использованием комплекса единичных показателей их качеств; увеличение достоверности определения приведенной толщины металла и условий обогрева поперечного сечения элементов фермы в условиях пожара; уточнение единичных показателей качества стальных конструкций, влияющих на их огнестойкость, возможность определения гарантированного предела огнестойкости стальной фермы по ее конструктивным параметрам.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе оценки огнестойкости стальной фермы здания путем испытания, включающего проведение технического осмотра, инструментальное измерение геометрических характеристик элементов фермы в их опасных сечениях; выявление условий опирания и крепления элементов фермы, схем обогрева их поперечных сечений; установление марки стали фермы, характеристик металла сопротивлению на сжатие и растяжение; определение величины нагрузки оценочного испытания на стальную ферму, схем ее приложения, интенсивности силовых напряжений в металле в опасных сечениях элементов стальной фермы; определение времени наступления предельного состояния по признаку потери несущей способности элементов стальной фермы под испытательной нагрузкой оценочного огневого испытания, особенностью является то, что оценку огнестойкости стальной фермы здания проводят без натурного огневого воздействия неразрушающими методами испытаний, используя комплекс единичных показателей качества стальных конструкций, назначают число и место расположения участков, в которых определяют единичные показатели качества, при этом технический осмотр дополняют определением группы однотипных стальных ферм, за единичные показатели качества принимают геометрические характеристики элементов фермы, степень напряжения и предел текучести металла, затем определяют интегральные конструктивные параметры: интенсивность нормальных силовых напряжений в поперечном сечении элементов стальной фермы в условиях оценочного огневого испытания; приведенную толщину металла поперечного сечения элементов стальной фермы, и, употребляя их, определяют проектное время сопротивления термосиловому воздействию каждого элемента стальной фермы по потере несущей способности, используя аналитическое выражение (1):

где τus - проектное время (мин) сопротивления термосиловому воздействию элемента стальной фермы по потере несущей способности; Tsr - приведенная толщина металла (мм) поперечного сечения элемента стальной фермы; Jσs - интенсивность нормальных силовых напряжений в поперечном сечении элемента стальной фермы; проектный предел огнестойкости стальной фермы (Fur, мин) определяют по длительности сопротивления до потери несущей способности наиболее слабого с точки зрения огнестойкости элемента (τus, min, мин) в условиях оценочного огневого испытания.

Интенсивность нормальных силовых напряжений (Jσs) в поперечном сечении элемента стальной фермы от испытательной нагрузки, действующей в условиях оценочного огневого испытания, вычисляют по алгебраическому выражению (2):

где Ко - интегральный коэффициент запаса несущей способности по огнестойкости элемента стальной фермы.

Интегральный коэффициент запаса несущей способности по огнестойкости сжатого элемента стальной фермы вычисляют по алгебраическому выражению (3):

где γn - коэффициент надежности по уровню ответственности здания; γf - коэффициент надежности по нагрузке; kс - показатель запаса несущей способности по снеговой нагрузке; kу - коэффициент надежности по степени использования предела текучести стали; kR - коэффициент запаса несущей способности по нормативному сопротивлению стали; kз - показатель запаса несущей способности сжатого элемента по жесткости закрепления его концов; φ - коэффициент продольного изгиба сжатого элемента.

Интегральный коэффициент запаса несущей способности по огнестойкости растянутого элемента определяют по алгебраическому выражению (4):

где γn - коэффициент надежности по уровню ответственности здания; γf - коэффициент надежности по нагрузке; kс - показатель запаса несущей способности по снеговой нагрузке; kу - коэффициент надежности по степени использования предела текучести стали; kR - коэффициент запаса несущей способности по нормативному сопротивлению стали.

Показатель запаса несущей способности стальной фермы по назначению (γn) определяют по уровню ответственности здания: при пониженном, нормальном и повышенном уровне ответственности γn=0,8, 1,0 и 1,1.

Коэффициент надежности по нагрузке (γf) определяют по алгебраическому выражению (5):

где ρ и q - соответственно общая расчетная и нормативная нагрузка на стальную ферму, Н/м2.

Показатель запаса несущей способности по снеговой нагрузке (kс) определяют по алгебраическому выражению (6):

где ρ и qсн - соответственно общая расчетная и снеговая нагрузка на стальную ферму, Н/м2.

Коэффициент надежности по степени использования предела текучести стали определяют по алгебраическому выражению (7):

где Ry и σ - соответственно предел текучести стали и проектные напряжения от силовых нагрузок на элемент фермы, МПа.

Коэффициент запаса несущей способности по нормативному сопротивлению стали (kR) определяют по алгебраическому выражению (8):

где Ru и Rs - соответственно временное и расчетное сопротивление стали, МПа.

Показатель запаса несущей способности сжатого элемента по жесткости закрепления его концов определяют по степенному уравнению (9):

где µ - коэффициент расчетной длины сжатого элемента фермы.

Коэффициент продольного изгиба сжатого элемента (φ) определяют в зависимости от гибкости элемента

где - расчетная длина элемента; r - радиус инерции сечения.

Приведенную толщину металла (Tsr, мм) поперечного сечения элемента стальной фермы рассчитывают по алгебраическому выражению (11):

где As - площадь поперечного сечения (мм2) элемента фермы; Рo - длина периметра обогрева (мм) поперечного сечения элемента фермы.

За единичные показатели качества элементов стальной фермы, влияющих на их огнестойкость, принимают геометрические характеристики поперечного сечения, условия закрепления концов элементов стальной фермы, длину периметра обогрева поперечного сечения, нормативное сопротивление стали при сжатии и растяжении по пределу текучести, величину испытательной нагрузки и схему ее приложения; величину продольной силы, интенсивность нормативных силовых напряжений в металле в опасных сечениях элементов стальной фермы.

Неразрушающие испытания проводят для группы однотипных элементов стальной фермы, различия между геометрическими размерами сечений и текучестью стали которых обусловлены главным образом случайными факторами.

Схему обогрева поперечных сечений элементов стальной фермы в условиях оценочного огневого испытания определяют в зависимости от фактического расположения частей здания в пространстве.

Проектный предел огнестойкости стальной фермы определяют по наименьшему времени (τus,min, мин) сопротивления термосиловому воздействию элемента фермы по потере несущей способности.

Причинно-следственная связь между совокупностью признаков и техническим результатом заключена в следующем.

Исключение натурного огневого испытания стальных ферм существующего здания и замена их на неразрушающие испытания снижает трудоемкость определения их огнестойкости, расширяет технологические возможности выявления проектной огнестойкости различно нагруженных стальных ферм любых размеров, дает возможность проведения испытания конструкций на огнестойкость без нарушения функционального процесса обследуемого здания, а также сопоставления полученных результатов со стандартными испытаниями аналогичных конструкций и сохранения эксплуатационной пригодности обследуемого здания без нарушения несущей способности его стальных ферм в процессе испытания. Следовательно, условия испытания стальных ферм на огнестойкость значительно упрощены.

Снижение экономических затрат на проведение испытания предусматривается за счет уменьшения расходов на демонтаж, транспортирование и натурные огневые испытания образцов стальных ферм.

Применение математического описания процесса сопротивления стальных ферм стандартному тепловому испытанию повышает точность и экспрессивность оценки их огнестойкости.

Использование интегральных конструктивных параметров, как-то: интенсивности напряжения стали и приведенной толщины металла поперечного сечения, - упрощает математическое описание процесса сопротивления нагруженных элементов фермы тепловому воздействию.

В предложенном техническом решении предусматривают проведение испытаний не одной, а группы однотипных стальных ферм. Это позволяет в 5-10 раз увеличить число испытуемых стальных ферм и повысить достоверность результатов испытаний и технического осмотра здания.

Определение огнестойкости конструкций только по одному показателю качества, например по толщине прокатного профиля элементов фермы, приводит, как правило, к недооценке их предела огнестойкости, поскольку влияние на него вариаций единичных показателей качества имеют различные знаки, и снижение огнестойкости за счет одного показателя может быть компенсировано другими. Вследствие этого в предложенном способе оценку огнестойкости стальной фермы предусматривают не по одному показателю, а по комплексу единичных показателей их качества. Это позволяет более точно учесть реальный ресурс огнестойкости стальных конструкций.

Уточнен комплекс единичных показателей качества элементов стальной фермы, влияющих на их огнестойкость, определяемых неразрушающими испытаниями.

Принятая величина выборки из общего числа однотипных стальных ферм здания обеспечивает достоверность, снижает сроки и трудоемкость проведения неразрушающих испытаний.

На фиг. 1 изображена геометрическая схема стальной фермы и ее расчетные элементы: 1 - верхний пояс; 2 - нижний пояс; 3 - стойка решетки; 4 - раскос растянутый; 5 - раскос сжатый; Ρ - узловая нагрузка, mc; R - опорная реакция, mc.

На фиг. 2 изображена компоновка расчетных элементов стальной фермы в узлах и схемы усилий в узлах А, Б и В: 6 - ось нижнего пояса фермы; 7 - ось верхнего пояса фермы.

На фиг. 3 изображены схемы элементов стальной фермы квадратного (а) и прямоугольного (б) сечения: b - ширина сечения; h - высота сечения; δ - толщина стенки, мм.

На фиг. 4 изображены схемы обогрева сечений элементов стальной фермы в условиях пожара, где показаны направления огневого воздействия на поперечное сечение стальной фермы и Tsr - приведенная толщина металла, мм.

Сведения, подтверждающие возможность осуществления изобретения с получением указанного выше технического результата.

Последовательность действий способа определения огнестойкости стальной фермы здания производят следующим образом.

Сначала проводят визуальный осмотр здания. Затем определяют группу однотипных стальных ферм и их общее число в ней. Вычисляют величину выборки однотипных конструкций. Назначают комплекс единичных показателей качества конструкции, влияющих на огнестойкость. Выявляют условия закрепления концов элементов фермы и ее опасные сечения. Вычисляют число испытаний единичного показателя качества стальной фермы в зависимости от ее статистической изменчивости. Затем оценивают единичные показатели качества элементов фермы и их интегральные параметры, и, наконец, по ним находят проектное время (мин) сопротивления термосиловому воздействию каждого элемента стальной фермы по потере несущей способности.

Под визуальным осмотром понимают проверку состояния конструкций, включающую выявление условий закрепления и обогрева элементов фермы, вид проката (двутавр, швеллер, гнутый профиль, уголок), форму поперечного сечения элемента фермы, ее геометрические размеры, марку (класс) стали, испытательную нагрузку при оценке стальной фермы на огнестойкость.

В процессе осмотра определяют группы однотипных стальных ферм. Под группой конструкций в здании понимают однотипные стальные фермы, изготовленные и возведенные в сходных технологических условиях и находящихся в подобных условиях эксплуатации.

Схемы обогрева поперечных сечений элементов стальной фермы в условиях огневого испытания определяют в зависимости от фактического расположения частей здания, устройства облицовок, укладки смежных конструкций, уменьшающих число сторон обогрева поперечного сечения элементов фермы.

Число и место расположения участков, в которых определяют показатели качества элементов стальной фермы, определяют так. В элементе стальной фермы, имеющем одно опасное сечение, участки располагают только в этом сечении. В элементе стальной фермы, имеющем несколько опасных сечений, испытуемые участки располагают равномерно по поверхности с обязательным расположением части участков в опасных сечениях.

К основным единичным показателям качества стальной фермы, обеспечивающих огнестойкость, относятся: толщина металла, марка стали, предел текучести ее, приведенная толщина металла поперечного сечения, интенсивность нормальных напряжений в опасном сечении, время сопротивления элементов стальной фермы термосиловому воздействию.

Проверяемыми геометрическими размерами являются: толщина стенки и полок прокатного профиля, ширина и высота поперечного сечения элемента стальной фермы, общая длина периметра и длина периметра обогрева поперечного сечения элемента стальной фермы.

Опасные сечения элементов стальной фермы назначают в местах наибольших изгибаемых моментов и продольных сил от действия испытательной нагрузки. Размеры элементов стальной фермы проверяют с точностью ±1 мм.

Используя полученные интегральные параметры элементов фермы Tsr (мм) и Jσs, по алгебраическому выражению (1) находят проектное время сопротивления (τus, мин) термосиловому воздействию элементов фермы по потере несущей способности.

Проектный предел огнестойкости стальной фермы, Fur, мин, регламентирует элемент фермы, имеющий наименьшее время сопротивления (τus, min, мин) термосиловому воздействию по потере несущей способности.

Пример практического применения. Элементы стальной фермы пролетом 16,0 м запроектированы из стального гнутого профиля прямоугольного и квадратного сечения; верхний сжатый пояс фермы - из профиля 140×100×5 мм; сталь С345; коэффициент использования 1/kу=(σ/Ry)=0,76; φ=0,678; нижний растянутый пояс фермы - из профиля 100×100×4 мм; сталь С345; 1/kу=(σ/Rу)=0,79; сжатые стойки фермы - из профиля 60×60×4 мм; сталь С245; 1/kу=(σ/Ry)=0,43; φ=0,774; сжатые раскосы фермы - из профиля 80×80×4 мм; сталь С245; 1/kу=(σ/Ry)=0,78; φ=0,753; растянутые раскосы фермы - из профиля 80×80×4 мм; сталь С245; 1/kу=(σ/Ry)=0,87; [5].

Расчет огнестойкости стропильной стальной фермы Ф1 (L=16,0 м)

3. Проектные данные по нагрузке:

Нагрузка снеговая - qсн=1,41 тс/м.

Общая нагрузка - ρ=2,35 тс/м.

1) Коэффициент надежности по нагрузке (γf) определяют по алгебраическому выражению (5):

γf=ρ/q=2,35/1,68=1,4.

2) Коэффициент запаса по нагрузке (без учета снеговой в расчетах огнестойкости конструкции) вычисляют по алгебраическому выражению (6):

kс=ρ/(ρ-qсн)=2,35/(2,35-1,41)=2,5.

3) Коэффициент надежности стальных элементов верхнего пояса фермы по степени использования материала (kу) находят по алгебраическому выражению (7): ky=Ry/σ=3200/2440=1,32;

для нижнего пояса из стали С345: kу=Ry/σ=3200/2540=1,26;

для стойки из стали С245: kу=Ry/σ=2450/1060=2,31;

для растянутого раскоса из стали С245: ky=Ry/σ=2450/2130=1,15;

для сжатого раскоса из стали С245: ky=Ry/σ=2450/1920=1,28.

4) Коэффициент запаса несущей способности по нормативному сопротивлению стали (kR) вычисляют по алгебраическому выражению (8):

kR=Ru/Rs=3450/3000=1,15 (для стали С345);

kR=Ru/Rs=2450/2100=1,17 (для стали С245).

5) Показатель запаса по несущей способности назначению принимают для нормального уровня ответственности γn=1,0.

6) Показатель запаса несущей способности сжатого элемента от жесткости закрепления его концов (kз) определяют по степенному уравнению (9):

kз=1/µ0,5=1/0,70,5=1,2,

где µ=0,7 - при жестком закреплении одного и шарнирном закреплении другого конца сжатого элемента.

7) Коэффициент продольного изгиба сжатого элемента: сжатого раскоса φ=0,753; верхнего пояса φ=0,678; сжатой стойки φ=0,774.

8) Интегральный коэффициент запаса при расчете огнестойкости верхнего сжатого пояса фермы вычисляют по алгебраическому выражению (3):

Kon·γf·kc·ky·kR·kз·φ=1,0·1,4·2,5·1,32·1,15·1,2·0,678=4,32;

интенсивность силовых напряжений в сечении сжатого элемента вычисляют по алгебраическому выражению (2): Jσs=1/Ко=1/4,32=0,23;

для нижнего растянутого пояса фермы вычисляют по алгебраическому выражению (4):

Kon·γf·kc·ky·kR=1,0-1,4-2,5-1,27-1,15=5,1;

для сжатой стойки фермы:

Кo=1,0·1,4·2,5·2,31·1,17·1,2·0,774=8,79;

Jσs=1/Кo=1/8,79=0,11;

то же, для растянутого раскоса фермы:

Kon·γf·kc·ky·kR=1,0·1,4·2,5·1,15·1,17=4,71;

Jσs=1/Ko=1/4,71=0,212;

то же, для сжатого раскоса фермы:

Кo=1,0·1,4·2,5·1,28·1,17·1,2·0,753=4,74;

Jσs=1/Кo=1/4,74=0,211.

Определение времени сопротивления термосиловому воздействию элементов стропильной стальной фермы Ф1.

1) Верхний пояс фермы: сечение 140×100×5 мм; As=22,36 см2;

периметр 4 - стороннего обогрева сечения: Рo=2·(14+10)=48 см;

приведенная толщина металла Tsr=Aso=22,36/48=0,47 см=4,7 мм;

время сопротивления термосиловому воздействию верхнего пояса фермы вычисляют по алгебраическому выражению (1):

τus=0,6·Tsr+110·((1-Jσs)1/2-0,5)=0,6·4,7+110·((1-0,23)1/2-0,5)=44,34 мин.

2) Нижний пояс фермы: сечение 100×100×4 мм; As=14,95 см2;

Рo=4·10=40 см; Tsr=Aso=14,95/40=0,374 см=3,74 мм;

τus=0,6·3,74+110·((1-0,2)1/2-0,5)=45,6 мин.

3) Стойки стропильной фермы: сечение 60×60×4 мм; As=8,55 см2;

Ро=4·6-24 см; Tsr=Asо=8,55/24=0,356 см=3,56 мм;

τus=0,6·3,56+110·((1-0,12)1/2-0,5)=50,3 мин.

4) Раскосы растянутые: сечение 80×80×4 мм; As=11,75 см2;

Ро=4·8=32 см; Tsr=As/Pо=11,75/32=0,367 см=3,67 мм;

τus=0,6·3,67+110·((1-0,212)1/2-0,5)=44,8 мин.

5) Раскосы сжатые: сечение 80×80×4 мм; As=11,75 см2;

Ро=4·8=32 см; Tsr=Aso=11,75/32=0,367 см=3,67 мм;

τus=0,6·3,67+110·((1-0,211)1/2-0,5)=44,9 мин.

Результаты расчета времени сопротивления термосиловому воздействию элементов стропильной стальной фермы Ф1 приведены в таблице 1.

Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Источники информации

1. Ильин Н.А. Техническая экспертиза зданий, поврежденных пожаром. - М.: Стройиздат, 1983. 128 с. (см. с. 90-91, 131, 134).

2. ГОСТ Ρ 53309-2009. Здания и фрагменты зданий. Метод натурных огневых испытаний. Общие требования.

3. Огнестойкость зданий / Бушев В.П., Пчелинцев В.А., Федоренко B.C., Яковлев А.И. М.: Стройиздат, 1970. 261 с. (см. с. 112, 252-256).

4. ГОСТ 30247.1-94. Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции.

5. СП 16.13330.2011. «СНиП 11-23-81* Стальные конструкции» (см. с. 56-60).


СПОСОБ ОЦЕНКИ ОГНЕСТОЙКОСТИ СТАЛЬНОЙ ФЕРМЫ ЗДАНИЯ
СПОСОБ ОЦЕНКИ ОГНЕСТОЙКОСТИ СТАЛЬНОЙ ФЕРМЫ ЗДАНИЯ
Источник поступления информации: Роспатент

Показаны записи 91-100 из 216.
09.08.2018
№218.016.7891

Двигатель внутреннего сгорания двустороннего действия с регенерацией теплоты

Изобретение относится к машиностроению, в частности к двигателестроению. Техническим результатом изобретения является: значительное повышение его КПД за счет применения регенерации теплоты и реверса газов; значительное снижение массы и габаритов двигателя за счет выполнения рабочего хода в...
Тип: Изобретение
Номер охранного документа: 0002663369
Дата охранного документа: 03.08.2018
19.08.2018
№218.016.7e15

Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид...
Тип: Изобретение
Номер охранного документа: 0002664325
Дата охранного документа: 16.08.2018
13.09.2018
№218.016.8716

Способ получения (s)-3-(аминометил)-5-метилгексановой кислоты из хлоргидрата

Изобретение относится к способу получения (S)-3-(аминометил)-5-метилгексановой кислоты формулы I из ее хлоргидрата. Способ осуществляют в соответствии с приведенной ниже схемой путем растворения хлоргидрата II в изопропаноле с последующей обработкой полученного раствора эквивалентным...
Тип: Изобретение
Номер охранного документа: 0002666737
Дата охранного документа: 12.09.2018
13.10.2018
№218.016.915a

Дезинфицирующая композиция

Изобретение относится к области медицины, а именно к дезинфектологии, и предназначено для дезинфекции высокого уровня эндоскопов, а также изделий медицинского назначения и поверхностей при инфекциях бактериальной, вирусной и грибковой этиологии в учреждениях лечебного профиля. Жидкую...
Тип: Изобретение
Номер охранного документа: 0002669343
Дата охранного документа: 10.10.2018
13.10.2018
№218.016.91f9

Система автоматического управления аппаратом воздушного охлаждения газа

Изобретение относится к аппаратам воздушного охлаждения газа и может использоваться, в частности, для охлаждения газа после компримирования на компрессорных станциях магистральных газопроводов. Система автоматического управления аппаратом воздушного охлаждения газа, содержащая блок задания...
Тип: Изобретение
Номер охранного документа: 0002669444
Дата охранного документа: 11.10.2018
21.10.2018
№218.016.94a3

Способ выявления сопротивления растяжению арматуры железобетонного элемента в условиях пожара

Изобретение относится к области пожарной безопасности зданий, в частности к огнестойкости железобетонных элементов конструкций здания, и касается исследования и анализа качества растянутой арматуры с помощью тепловых средств при совместном воздействии нагрузки и высокой температуры стандартного...
Тип: Изобретение
Номер охранного документа: 0002670239
Дата охранного документа: 19.10.2018
23.10.2018
№218.016.950b

Устройство для извлечения элементов труб из отработавших трубопроводов

Изобретение относится к утилизации металла труб из отработавших. Устройство для извлечения элементов труб из отработавших трубопроводов содержит корпус с передней ступенью с наружным диаметром D, оснащенной узлом для закрепления вытяжного троса, переходником и задней ступенью с внутренним...
Тип: Изобретение
Номер охранного документа: 0002670318
Дата охранного документа: 22.10.2018
09.11.2018
№218.016.9bb0

Способ оценки огнестойкости многопустотной преднапряженной железобетонной плиты

Изобретение относится к области пожарной безопасности зданий - огнестойкости их конструкций. Сущность изобретения заключается в том, что испытание многопустотной преднапряженной многопустотной железобетонной плиты проводят без разрушения, по комплексу единичных показателей качества. Для этого...
Тип: Изобретение
Номер охранного документа: 0002671910
Дата охранного документа: 07.11.2018
21.11.2018
№218.016.9f32

Способ сборки бурового шарошечного долота корпусного типа

Предлагаемое изобретение относится к буровой технике, а именно к способу сборку бурового шарошечного долота корпусного типа. Технический результат заключается в повышении точности сборки секций долота за счет исключения их радиального биения. До сборки секций корпус долота завинчивается...
Тип: Изобретение
Номер охранного документа: 0002672702
Дата охранного документа: 19.11.2018
28.11.2018
№218.016.a133

Устройство аналогового датчика реактивной составляющей переменного тока

Устройство аналогового датчика реактивной составляющей переменного тока относится к измерительной техники и может быть применено в качестве датчика реактивной составляющей переменного тока при автоматическом или ручном управлении реактивной мощностью узла нагрузки системы электроснабжения....
Тип: Изобретение
Номер охранного документа: 0002673335
Дата охранного документа: 26.11.2018
Показаны записи 71-76 из 76.
01.09.2019
№219.017.c503

Способ оценки пожароустойчивости деревянного сжатого элемента

Изобретение относится к области пожарной безопасности: к исследованию параметров горения твердых веществ, строительных материалов и деревянных конструкций, в частности к определению скорости обугливания деревянных сжатых элементов в условиях пожара в здании. Заявлен способ испытания...
Тип: Изобретение
Номер охранного документа: 0002698571
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c52c

Способ оценки пожароустойчивости деревянного изгибаемого элемента

Изобретение относится к области пожарной безопасности зданий. Предложен способ определения временного показателя пожароустойчивости изгибаемого элемента под испытательной нагрузкой в условиях стандартного теплового воздействия. Для этого неразрушающими испытаниями производят поверку единичных...
Тип: Изобретение
Номер охранного документа: 0002698572
Дата охранного документа: 28.08.2019
22.12.2019
№219.017.f08c

Огнезащищенная металлическая чугунная опора здания

Изобретение относится к области пожарной безопасности зданий, в частности может быть использовано при изготовлении конструктивной огнезащиты чугунной опоры здания. Техническим результатом изобретения является повышение надежности крепления элементов опоры и конструктивной огнезащиты, повышение...
Тип: Изобретение
Номер охранного документа: 0002709532
Дата охранного документа: 19.12.2019
17.02.2020
№220.018.0329

Способ огнезащиты чугунной опоры здания

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты чугунной опоры здания. Элементы конструктивной огнезащиты прикрепляют вплотную к несущему стержню опоры. Выявляют марку серого чугуна, интенсивность силовых напряжений в сечении несущего...
Тип: Изобретение
Номер охранного документа: 0002714401
Дата охранного документа: 14.02.2020
22.05.2023
№223.018.6b86

Способ определения огнестойкости монолитной сталежелезобетонной плиты перекрытия здания

Изобретение относится к области оценки и обеспечения пожарной безопасности сталежелезобетонных элементов и строительных конструкций зданий и сооружений и может быть использовано для анализа методов и средств неразрушающего контроля элементов строительных конструкций. Заявлен способ определения...
Тип: Изобретение
Номер охранного документа: 0002795798
Дата охранного документа: 11.05.2023
16.06.2023
№223.018.7b54

Фундамент стаканного типа под колонну

Изобретение относится к области строительства железобетонного фундамента стаканного типа под сборную колонну здания. Фундамент под колонну включает железобетонный подколонник стаканного типа, армированный пространственным каркасом, и сопряженную с ним фундаментную плиту. Подколонник выполнен из...
Тип: Изобретение
Номер охранного документа: 0002751106
Дата охранного документа: 08.07.2021
+ добавить свой РИД