×
13.01.2017
217.015.8b15

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование. Воздушно-абразивную обработку проводят порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа. Травление имплантата осуществляют в водном растворе HF (5-8 мас.%) + HNO (15-19 мас.%) в течение 0,1-02 минут. Газотермическое оксидирование проводят путем индукционного нагрева в воздушной атмосфере до температуры 800-900°C при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг. Затем имплантат выдерживают в течение 0,5-2 минут и охлаждают на воздухе. Обеспечивается формирование на поверхности титановых имплантатов оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размером до 70±10 нм, с помощью высокопроизводительного и ресурсосберегающего способа. 2 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов.

Считается, что взаимодействие материала поверхности имплантата и костной ткани происходит на нанометровом уровне минерализованных коллагеновых фибрилл [N. Wang, Н. Li, W. Lii, J. Li, J. Wang, Z. Zhang, et al., Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs, Biomaterials 32 (2011) 6900-6911; Mendonca G. et al. Advancing dental implant surface technology-from micron-to nanotopography // Biomaterials. - 2008. - T. 29. - №. 28. - C. 3822-3835].

В настоящее время для формирования на титановых внутрикостных имплантатах гетерогенной поверхности, характеризуемой наличием микро- и наноразмерных структурных элементов, используются следующие технологические процессы: обработка концентрированными потоками энергии, газотермическое напыление, электрохимическое и газотермическое оксидирование. Известные способы формирования на титане микро- и наноструктурированной поверхности характеризуются значительной продолжительностью процесса, его технологической сложностью или токсичностью используемых веществ, что способствует поиску новых путей решения имеющейся проблемы.

Известен способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев [патент RU на изобретение №2527511 / Я.А. Четокин, Д.В. Пугашкин // Способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев. - 2014]. Формирование наноразмерного поверхностного покрытия осуществляют путем обработки поверхности металлических изделий легирующим сплавом, используемым в мелкодисперсной порошкообразной форме. Затем на подготовленные участки поверхности воздействуют лазерным излучением, производимым сфокусированным оптическим тепловым лучом высокоэнергетического квантового генератора, перемещая лазерный луч с шагом в 25 микрон. После этого проводят охлаждение поверхности обрабатываемой детали струей сжатого воздуха температурой 20°C под давлением 8 кПа. При охлаждении происходит кристаллизация легирующего сплава на металлической поверхности изделия.

Основным недостатком способа является технологическая сложность равномерной обработки поверхности.

Известен также способ получения наноструктурированного покрытия в процессе газотермического напыления [патент RU на изобретение №2542218 / Л.Ю. Боташев, Н.У. Бисилов, Р.С. Малсугенов // Способ получения наноструктурированного покрытия. - 2015]. В камере сгорания распылителя формируют высокотемпературный газовый поток путем сжигания топлива в окислителе. В камеру сгорания подачу исходного материала осуществляют в виде порошка. Длину камеры выбирают из условия обеспечения испарения порошкового материала путем воздействия высокотемпературным газовым потоком. Полученный газовый поток после выхода из камеры сгорания ускоряют в сопле и охлаждают с образованием наночастиц, причем используют сопло, длину которого выбирают из условия охлаждения газового потока до температуры ниже температуры плавления исходного материала. Охлаждение газового потока осуществляют путем смешения с холодным потоком инертного газа.

Основным недостатком способа является технологическая сложность процесса газотермического напыления.

Известен также способ получения биосовместимого покрытия на имплантатах из титана и его сплавов [патент RU на изобретение №2322267 / И.В. Родионов, К.Г. Бутовской, О.В. Бейдик, Ю.В. Серянов // Способ получения биосовместимого покрытия на имплантатах из титана и его сплавов. - 2008], позволяющий формировать на поверхности имплантируемых конструкций пористые металлооксидные слои. Согласно способу процесс оксидирования титана и его сплавов проводят при температуре 600-1000°C в течение 1,5-2 ч в газовой среде, подаваемой под давлением 1,2-1,3 атм и состоящей из смеси инертного (аргона, неона, гелия) и окисляющего (кислорода, диоксида углерода) газов при следующем соотношении компонентов: 60-70% и 40-60% соответственно.

Основными недостатками способа являются технологическая сложность и большая продолжительность процесса оксидирования.

Наиболее близким к предлагаемому способу является способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах [патент RU на изобретение №2469744 / Ф.М. Абдуллаев // Способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах. - 2012], позволяющий получить пористую наноструктурированную оксидную пленку толщиной 1-10 мкм, состоящую из открытых нанотрубок оксидов титана с размерами пор 40-140 нм. Осуществляют последовательную обработку поверхности имплантата методами пескоструйной обработки, травления в растворе кислот HF (2-3 мас. %) или HF (2-3 мас. %) + HNO3 (5-30 мас. %), или HNO3 + HCl (10-30 мас. %), обжиг-дегазацию в вакууме при температуре 300-770°C, предварительное анодирование (электрохимического оксидирования) при напряжении 30-90 В, удаление оксидной пленки травлением в растворе HF (2-20 мас. %) или HF (2-3 мас. %) + HNO3 (5-30 мас. %), однофазное или двухфазное анодирование постоянным или импульсным (0,5 Гц) током в 5-20% водном растворе щавелевой кислоты при формирующем напряжении 25-130 В и обжиг в печи для структурирования кристаллов и удаления жидкости из пор поверхности при температуре 300-550°C.

Основным недостатком способа являются длительность процесса, обусловленная необходимостью проведения вакуумного обжига-дегазации, предварительного электрохимического оксидирования и удаления оксидной пленкой травлением, а также обжига в печи для структурирования кристаллов и удаления жидкости из пор поверхности.

Задачей изобретения является создание технологически простого и высокопроизводительного и ресурсосберегающего способа формирования наноструктурированного биоинертного покрытия на титановых имплантатах.

Поставленная задача решается тем, что в способе формирования наноструктурированного биоинертного покрытия на титановых имплантатах, включающем воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование, после воздушно-абразивной обработки и травления проводят процесс оксидирования путем индукционного нагрева в воздушной атмосфере до температуры 800-900°C при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, затем выдерживают в течение 0,5-2 минут и охлаждают на воздухе. Заявляется также изобретение, в котором наряду с вышеописанными признаками воздушно-абразивную обработку проводят порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа.

Кроме того, заявляется также способ, в котором наряду с вышеописанными признаками травление имплантата осуществляют в водном растворе HF (5-8 мас. %) + HNO3 (15-19 мас. %) в течение 0,1-0,2 минут.

Техническим результатом является формирование на поверхности титановых имплантатов оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размеров до 70±10 нм, с помощью высокопроизводительного и ресурсосберегающего способа.

Изобретение поясняется фигурами, на которых представлены: процесс газотермического оксидирования (Фиг. 1), микро- и наноразмерная морфология поверхности формируемого оксидного покрытия (Фиг. 2а и 2б соответственно), а также морфология структуры поверхности оксидного покрытия (Фиг. 3а и 3б) и образцов технически чистого титана (Фиг. 3в и 3г) после испытаний in vitro в течение 7 суток.

На Фиг. 1 позициями 1-5 обозначены:

1 - имплантат;

2 - керамическая камера оксидирования;

3 - водоохлаждаемый индуктор;

4 - источник питания;

5 - оксидное покрытие.

Предлагаемый способ осуществляют следующим образом.

Титановый имплантат подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа. Затем поверхность очищают от технологических загрязнений и подвергают травлению в водном растворе кислот HF (5-8 мас. %) + HNO3 (15-19 мас. %) в течение 0,1-0,2 минут. После этого имплантат промывают в дистиллированной воде и сушат на воздухе. Имплантат 1 помещают в керамическую камеру оксидирования 2 (повторяющую форму изделия), на внешней поверхности которой размещен водоохлаждаемый индуктор 3, подключенный к источнику питания 4 (Фиг. 1). После чего имплантат 1 подвергается индукционному нагреву при частоте тока на индукторе 90±10 кГц и удельной потребляемой электрической мощности 0,2-0,4 Вт/кг до температуры 800-900°C, последующей выдержке в течение 0,5-2 минут, последующему охлаждению на воздухе (Фиг. 1). В результате на поверхности изделия образуется оксидное покрытие 5 (Фиг. 1).

Технологические режимы воздушно-абразивной обработки, травления и газотермического оксидирования были определены путем проведения исследований методом растровой электронной микроскопии. Приведенные пределы значений технологических режимов воздушно-абразивной обработки обеспечивают формирование заданного микрорельефа поверхности имплантата.

Приведенные пределы значений технологических режимов газотермического оксидирования обеспечивают формирование на титане оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размером до 70±10 нм.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшения эффективности процесса обработки и наблюдается снижение коэффициента мощности.

Предельные значения потребляемой удельной электрической мощности (0,2-0,4 Вт/кг) обусловлены тем, что при величине удельной электрической мощности менее 0,2 Вт/кг будет затруднен нагрев малогабаритных титановых изделий до заданной температуры из-за потерь на излучение. При величине удельной электрической мощности более 0,4 Вт/кг увеличивается вероятность перегрева титана и, как следствие, появление трещин поверхностного слоя.

При значениях температуры нагрева менее 800°C и продолжительности процесса газотермического оксидирования менее 0,5 минут образуется оксидное покрытие, не обладающее наноструктурированной морфологией поверхности. При значениях температуры нагрева более 900°C и продолжительности термообработки более 2 минут на поверхности титана образуются оксидные покрытия, обладающие низкими значениями адгезионно-когезионной прочности.

Примеры выполнения способа.

Пример 1. Стоматологический цилиндрический имплантат с диаметром 3,7 мм и длиной 10 мм, изготовленный из технического титана марки ВТ1-00, подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2 МПа. Затем изделие очищают от технологических загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П). Промывают в дистиллированной воде с последующей сушкой на воздухе. Затем имплантат подвергают травлению в водном растворе кислот HF (5 мac.%) + HNO3 (1 мас. %) в течение 0,1 минуты и промывают дистиллированной водой с последующей сушкой на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 5 мм и длиной 20 мм. Затем имплантат подвергают индукционному нагреву до температуры 850°C и выдерживают в течение 0,5 минут при частоте тока на индукторе 90±10 кГц. После проведения процесса газотермического оксидирования имплантат охлаждают на воздухе до комнатной температуры.

Пример 2. Стержневой фиксатор для наружного чрезкостного остеосинтеза диаметром 4 мм и длиной 50 мм, изготовленный из технического титана марки ВТ6, подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,3 МПа в течение 2 минут. Поверхность фиксатора очищают от технологический загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П) и промывают дистиллированной водой с последующей сушкой на воздухе. Затем имплантат подвергают травлению в водном растворе кислот HF (8 мас. %) + HNO3 (16 мас. %) в течение 0,2 минут, промывают дистиллированной водой и сушат на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 6 мм и длиной 60 мм. Имплантат подвергают индукционному нагреву до температуры 900°C и выдерживают в течение 1 минуты при частоте тока на индукторе 90±10 кГц. После проведения процесса газотермического оксидирования имплантата охлаждают на воздухе до комнатной температуры.

Для подтверждения формирования на поверхности титановых имплантатов наноструктурированных биоинертных покрытий в результате обработки, описанной в предложенном способе, были проведены исследования морфологии и проверка биосовместимости.

Исследовались образцы из титанового сплава ВТ6 с оксидными покрытиями, сформированными по способу, описанному в примере 2. Структурное состояние покрытий изучалось методом растровой электронной микроскопии (РЭМ) на электронном микроскопе «MIRA II LMU». Проверка биосовместимости образцов с покрытиями проводилась в условиях in vitro. В качестве контрольных образцов использовались пластинки из технического титана марки ВТ1-00, подвергнутые воздушно-абразивной обработке. Для исследования были использованы дермальные фибробласты человека, выделенные методом миграции из фрагментов нормальной кожи. Продолжительность культивирования составила 7 суток, что считается достаточным для протекания стадий адгезии и начала пролиферации. Далее образцы покрытий с клетками подвергались фиксирующей обработке формальдегидом и последующему изучению с применением РЭМ.

Результаты растровой электронной микроскопии показали, что микроструктура поверхности представляет собой рельеф исходной металлической основы после воздушно-абразивной обработки, травления и оксидирования. Исследование в нанометровом масштабе выявило структуру поверхности оксидного покрытия, представленную округлыми зернами и порами, с линейными размерами до 70±10 нм (Фиг. 2).

Проверка биосовместимости in vitro оксидных покрытий, сформированных по предложенному способу, показала, что клетки фибробластов более стабильно закрепляются на поверхности покрытия (Фиг. 3а, б) чем на поверхности контрольных образцов из технического титана (Фиг. 3в, г), что свидетельствует о высоком уровне биосовместимости оксидных покрытий, полученных по предложенному способу.

Из полученных результатов следует, что предложенный способ позволяет формировать наноструктурированные биоинертные покрытия на титановых имплантатах.


СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 89.
27.04.2015
№216.013.473f

Теплофикационная газотурбинная установка

Изобретение относится к энергетике. Теплофикационная газотурбинная установка, содержащая компрессор, соединенный последовательно с камерой сгорания, газовой турбиной и электрогенератором, к выхлопу газовой турбины подключен паровой котел-утилизатор, соединенный по пару с тепловым потребителем,...
Тип: Изобретение
Номер охранного документа: 0002549743
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.482d

Способ модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами

Изобретение относится к медицине, а именно к способу модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами. При осуществлении способа проводят термообработку поверхности титановых имплантатов аргоно-плазменной струей при токе дуги 150-250 А,...
Тип: Изобретение
Номер охранного документа: 0002549984
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.554a

Способ получения лантансодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, в частности к способу получения лантансодержащего биопокрытия титанового имплантата. Способ получения заключается в предварительной подготовке лантансодержащего порошка, подготовке поверхности титановой основы имплантата, плазменном напылении титанового подслоя...
Тип: Изобретение
Номер охранного документа: 0002553355
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56b3

Парогазовая установка на базе аэс

Изобретение относится к области теплоэнергетики, преимущественно к атомной энергетике, и предназначено для использования на энергокомплексах, включающих паротурбинные установки атомных электростанций (АЭС) двухконтурного типа. Парогазовая установка на базе АЭС снабжена газопаровым...
Тип: Изобретение
Номер охранного документа: 0002553725
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573a

Устройство для защиты от отравляющих, радиоактивных веществ, биологических средств и маскировки бронеобъектов

Изобретение относится к защите бронетанковой техники от отравляющих, радиоактивных веществ и биологических средств и может быть использовано для полной дегазации, дезактивации, дезинфекции и маскировки бронетанковой техники и транспортных средств. Устройство включает систему подачи...
Тип: Изобретение
Номер охранного документа: 0002553860
Дата охранного документа: 20.06.2015
10.07.2015
№216.013.5ffa

Способ получения антифрикционного материала

Изобретение относится к области получения антифрикционных материалов с покрытиями на основе фтортеломеров алкилкетонов, которые могут быть использованы в узлах трения и в составах смазочных композиций для тяжелонагруженных узлов машин и механизмов. Для получения антифрикционного материала...
Тип: Изобретение
Номер охранного документа: 0002556111
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.61e0

Ортопедический аппарат для разгрузки нижних конечностей человека

Изобретение относится к медицинской технике, а именно к ортопедическим аппаратам для разгрузки нижних конечностей человека. Аппарат содержит верхнюю, среднюю и нижнюю части, верхняя часть состоит из радиусной направляющей с передним упором, к которой закреплено седло и через перемычку...
Тип: Изобретение
Номер охранного документа: 0002556598
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6268

Сырьевая смесь для изготовления пеносиликата

Изобретение относится к промышленности строительных материалов, а именно к составам для изготовления теплоизоляционного и конструкционно-теплоизоляционного пеносиликата с улучшенными функциональными свойствами. Технический результат - стабилизация ячеистой структуры пеносиликата, повышение...
Тип: Изобретение
Номер охранного документа: 0002556739
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6a5d

Способ обработки внутренних цилиндрических поверхностей свободным абразивом

Изобретение относится к абразивной обработке и может быть использовано при пескоструйной обработке внутренних поверхностей изделий различных диаметров и длин. На части внутренней цилиндрической поверхности создают герметичную рабочую зону посредством двух заслонок, внутрь которой помещают...
Тип: Изобретение
Номер охранного документа: 0002558782
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7092

Способ удаления глазо-двигательных артефактов на электроэнцефаллограммах

Изобретение относится к области биомедицинских технологий. Регистрируют сигналы электроэнцефаллограмм и электроокулограмм. Нормируют сигналы электроокулограмм, характеризующие вертикальные и горизонтальные движения глаз, в интервале [1.5, 5] с. Осуществляют процедуру вычитания из исходного...
Тип: Изобретение
Номер охранного документа: 0002560388
Дата охранного документа: 20.08.2015
Показаны записи 41-50 из 100.
10.01.2015
№216.013.1bd8

Вяжущее

Изобретение относится к промышленности строительных материалов, а именно к составам вяжущих смесей, используемых для изготовления строительных материалов и изделий. Технический результат заключается в повышении прочности и водостойкости материала. Вяжущее содержит компоненты при следующем...
Тип: Изобретение
Номер охранного документа: 0002538556
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2425

Вяжущее

Изобретение относится к промышленности строительных материалов, а именно к составам вяжущих смесей, используемых для изготовления строительных материалов и изделий. Технический результат заключается в повышении прочности и водостойкости материала. Вяжущее содержит компоненты при следующем...
Тип: Изобретение
Номер охранного документа: 0002540706
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2ac8

Способ получения оксидного покрытия на стальных чрескостных имплантатах

Изобретение относится к области медицинской техники. Описан способ получения оксидных биосовместимых покрытий на стальных чрескостных имплантатах, который осуществляют путем их термического оксидирования на воздухе при температуре 300-600°С в условиях обдувки воздухом, подаваемым в рабочую...
Тип: Изобретение
Номер охранного документа: 0002542409
Дата охранного документа: 20.02.2015
20.04.2015
№216.013.41ce

Устройство для ультразвуковой обработки

Изобретение относится к ультразвуковой технике и может быть использовано при обработке жаропрочных, нержавеющих сплавов, хрупких материалов типа керамики, стекла, а также других труднообрабатываемых материалов. Устройство содержит основную колебательную систему, включающую основную отражающую...
Тип: Изобретение
Номер охранного документа: 0002548344
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.435a

Способ получения оксидного биосовместимого покрытия на металлических имплантатах для наружного чрескостного остеосинтеза

Изобретение относится к области медицинской техники, а именно к способу получения оксидного биосовместимого покрытия на чрескостном металлическом имплантате. Способ заключается в оксидировании имплантата в смеси перегретого водяного пара и наночастиц серебра при температуре 500-550°C, давлении...
Тип: Изобретение
Номер охранного документа: 0002548740
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.473f

Теплофикационная газотурбинная установка

Изобретение относится к энергетике. Теплофикационная газотурбинная установка, содержащая компрессор, соединенный последовательно с камерой сгорания, газовой турбиной и электрогенератором, к выхлопу газовой турбины подключен паровой котел-утилизатор, соединенный по пару с тепловым потребителем,...
Тип: Изобретение
Номер охранного документа: 0002549743
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.482d

Способ модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами

Изобретение относится к медицине, а именно к способу модифицирования поверхности титановых имплантатов порошковыми биокерамическими материалами. При осуществлении способа проводят термообработку поверхности титановых имплантатов аргоно-плазменной струей при токе дуги 150-250 А,...
Тип: Изобретение
Номер охранного документа: 0002549984
Дата охранного документа: 10.05.2015
10.06.2015
№216.013.554a

Способ получения лантансодержащего биопокрытия титанового имплантата

Изобретение относится к медицине, в частности к способу получения лантансодержащего биопокрытия титанового имплантата. Способ получения заключается в предварительной подготовке лантансодержащего порошка, подготовке поверхности титановой основы имплантата, плазменном напылении титанового подслоя...
Тип: Изобретение
Номер охранного документа: 0002553355
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.56b3

Парогазовая установка на базе аэс

Изобретение относится к области теплоэнергетики, преимущественно к атомной энергетике, и предназначено для использования на энергокомплексах, включающих паротурбинные установки атомных электростанций (АЭС) двухконтурного типа. Парогазовая установка на базе АЭС снабжена газопаровым...
Тип: Изобретение
Номер охранного документа: 0002553725
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.573a

Устройство для защиты от отравляющих, радиоактивных веществ, биологических средств и маскировки бронеобъектов

Изобретение относится к защите бронетанковой техники от отравляющих, радиоактивных веществ и биологических средств и может быть использовано для полной дегазации, дезактивации, дезинфекции и маскировки бронетанковой техники и транспортных средств. Устройство включает систему подачи...
Тип: Изобретение
Номер охранного документа: 0002553860
Дата охранного документа: 20.06.2015
+ добавить свой РИД