×
13.01.2017
217.015.8adf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета. При этом координаты цвета R, G и B нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету. При этом относительная плотность рассчитывается по формуле: где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C), R, G, B - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции. Техническим результатом является упрощение и повышение производительности способа определения относительной плотности (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти. 1 табл.

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Относительная плотность является важнейшей характеристикой всех видов сырья, продуктов и полупродуктов в процессах нефтехимпереработки, в том числе масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки.

В лабораторном контроле нефтеперерабатывающих производств распространен ареометрический способ определения относительной плотности масляных фракций (ГОСТ 3900-85).

Недостатки стандартного ареометрического способа:

1) необходимость отбора значительного количества пробы (не менее 150 мл);

2) предварительный нагрев высоковязких образцов масляных фракций до текучего состояния, термостатирования образца.

Наиболее близким техническим решением к заявляемому способу является способ [Шуляковская Д.О., Доломатов М.Ю., Доломатова М.М., Еремина С.А. Метод фотоизображений в информационной системе контроля физико-химических свойств многокомпонентных углеводородных систем // Электротехнические и информационные комплексы и системы. - 2014. - №1. - С. 106-113] определения физико-химических свойств многокомпонентных углеводородных систем по фотоизображениям. В данном способе относительная плотность таких многокомпонентных углеводородных систем, как высококипящие нефтяные фракции (мазуты, гудроны, крекинг-остатки, нефтяные смолы и асфальтены), определяется по фотоизображениям оптически прозрачных растворов данных систем. Суть способа заключается в следующем. Производится приготовление раствора образца. Раствор заливается в прозрачную кювету и производится регистрация фотоизображения раствора с люминесцентной лампой или дневным солнечным светом в качестве источника излучения. Затем в графическом редакторе по фотоизображению для исследуемого раствора определяются координаты цвета R, G, В в колориметрической системе sRGB. Далее определяется координата цвета Xphoto или Yphoto раствора образца в колориметрической системе XYZ путем стандартного перехода из колориметрической системы sRGB в XYZ. Затем определяется координата цвета XD или YD (для стандартного источника D65 CIE) путем корректировки, позволяющей учитывать различие освещения при фотосъемке от стандартного источника D65 CIE. Следующий этап заключается в оценке значения интегрального показателя поглощения исследуемого образца по определенной ранее координате цвета XD или YD и концентрации раствора, расчет которой производится при приготовлении раствора. Затем относительная плотность исследуемой многокомпонентной углеводородной системы определяется по интегральному показателю поглощения по линейной зависимости.

Основным недостатком данного способа является его непригодность для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) необходимостью в процедуре приготовления оптически прозрачных растворов, требующей специальной квалификации персонала лаборатории;

2) необходимостью в переходе от одной колориметрической системы к другой, что приводит к увеличению погрешности определения свойств;

3) дополнительным процессом корректировки цветовых характеристик фотоизображений на стандартный источник излучения;

4) временными затратами, связанными с процессом приготовления растворов, корректировкой цветовых характеристик на стандартный источник, определением интегрального показателя поглощения.

Также наиболее близким техническим решением к заявляемому способу является способ [Доломатов М.Ю., Ярмухаметова Г.У., Доломатова Л.А. Взаимосвязь физико-химических и цветовых свойств углеводородных систем в колориметрических системах RGB и XYZ // Прикладная физика. - 2008. - №4. - С. 43-49] определения физико-химических свойств таких углеводородных систем, как нефти и нефтяные остатки, который основан на так называемой корреляции цвет-свойства:

где Z - физико-химическое свойство исследуемой системы;

q - цветовая характеристика оптически прозрачного раствора в колориметрических системах RGB и XYZ;

β1, β2 - эмпирические коэффициенты, зависящие от типа цветовой характеристики и класса углеводородной системы.

Цветовые характеристики растворов многокомпонентных углеводородных систем рассчитываются в стандартных колориметрических системах XYZ и RGB по электронным абсорбционным спектрам поглощения излучения в видимом диапазоне электромагнитного спектра в интервале от 380 до 780 нм. Методика расчета цветовых характеристик, зависящих от стандартных источников излучения (А, В, С или D CIE), состоит из следующих этапов:

1. Расчет координат цвета (X, Y, Z) в колориметрической системе XYZ:

где E(λi) - спектральная характеристика стандартного источника излучения (А, В, С или D);

, , - функции сложения стандартного колориметрического наблюдателя;

τ(λi) - функция спектрального коэффициента пропускания в видимой области спектра;

с - концентрация исследуемого раствора, г/л;

l - толщина поглощающего слоя раствора, см;

k(λi) - коэффициенты поглощения излучения в видимой области, л/(г·см) (в системе СИ 102·м2/кг);

n - количество частичных интервалов разбиения спектра.

2. Расчет координат цвета (R, G, В) в колориметрической системе RGB:

3. Расчет координат цветности (x, у, z) системы XYZ и (r, g, b) системы RGB по формулам:

где m, mRGB - цветовой модуль в колориметрических системах XYZ и RGB.

Данный способ также непригоден для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) длительность процесса снятия спектра в видимой области спектра;

2) необходимость использования специального спектрометра;

3) способ может быть применим для оптически прозрачных растворов веществ только заданной концентрации.

Целью изобретения является упрощение и повышение производительности способа определения относительной плотности (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки нефтеперерабатывающего завода с температурами кипения от 300-550°С (второй, третьей, четвертой и пятой фракции). Поставленная цель достигается за счет того, что предлагаемый способ имеет повышенную экспрессность, применимость для различных нефтяных масляных фракций с температурами кипения от 300-550°С. Способ предусматривает упрощение технологии в связи с отсутствием необходимости подготовки образцов и существенным упрощением необходимых расчетов, а также упрощением используемой аппаратуры.

Суть способа заключается в связи плотности и концентрации светопоглощающих центров в оптически прозрачной среде. В масляных фракциях, как известно, присутствуют полициклические углеводороды с числом колец более трех, нафтеноароматические компоненты и компоненты с гетероатомами азота, серы и кислорода. Такие компоненты при переходе из возбужденного в стабильное состояние излучают свет в видимой области (обладают цветностью), что соответствует π-π* или π-n переходам.

Предлагаемый способ заключается в том, что определение относительной плотности нефтяной масляной фракции производится по ее цветовым характеристикам координатам красного, зеленого и синего цвета, отличающийся тем, что координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по установленной зависимости:

Предлагаемый способ осуществляется следующим образом. Небольшую навеску исследуемой нефтяной масляной фракции помещают в прозрачную кювету размером 10*20 мм (шириной 20 мм и толщиной 10 мм) и регистрирую фотоизображение кюветы с масляной фракцией с дневным светом в качестве источника излучения. Регистрация фотоизображения производится цифровым фотоаппаратом с разрешением 10 мегапикселей (размер матрицы 3872×2592 пиксела) и более.

Полученное фотоизображение обрабатывают в растровом графическом редакторе и получают координаты красного, зеленого и синего цвета (RsRGB, GsRGB, BsRGB) в колориметрической системе sRGB.

Рассчитывают относительную плотность нефтяной масляной фракции по установленной зависимости:

|где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°С и температуре воды 4°С);

RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.

Пример 1. Определяют относительную плотность второй масляной фракции (температура кипения 300-400°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=127, GsRGB=125, BsRGB=46. Рассчитывают относительную плотность второй масляной фракции (температура кипения 300-400°С) по зависимости (7):

Пример 2. Определяют относительную плотность третьей масляной фракции (температура кипения 350-420°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=118, GsRGB=94, BsRGB=26. Рассчитывают относительную плотность третьей масляной фракции (температура кипения 350-420°С) по зависимости (7):

Пример 3. Определяют относительную плотность четвертой масляной фракции (температура кипения 420-500°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=119, GsRGB=81, BsRGB=22. Рассчитывают относительную плотность четвертой масляной фракции (температура кипения 420-500°С) по зависимости (7):

Пример 4. Определяют относительную плотность пятой масляной фракции (температура кипения 450-550°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=96, GsRGB=30, BsRGB=25. Рассчитывают относительную плотность пятой масляной фракции (температура кипения 450-550°С) по зависимости (7):

Значения относительной плотности исследуемых масляных фракций (примеры 1-4), определенные стандартным ареометрическим способом (ГОСТ 3900-85) и предлагаемым способом приведены в таблице 1.

Вывод: как следует из таблицы 1, относительная погрешность определения относительной плотности нефтяных масляных фракций по предлагаемому способу по сравнению со стандартным в среднем составляет 0,45%. Следовательно, предлагаемый способ может быть использован для экспрессного определения относительной плотности нефтяных масляных фракций.

Преимущества заявляемого способа экспрессного определения относительной плотности нефтяных масляных фракций заключаются в следующем:

1. использование небольшого количества образца нефтяной масляной фракции (порядка 3 мл);

1. не требуется предварительная подготовка образцов: нагрев высоковязких образцов нефтяных масляных фракций до текучего состояния, термостатирование, а также не требуется приготовление растворов;

2. достаточно одного фотографического изображения;

3. подходит для нефтяных масляных фракций в широком диапазоне температур кипения 300-550°С;

4. имеется потенциальная возможность дистанционного контроля относительной плотности нефтяных масляных фракций без отбора проб, что позволяет применять способ в системе оперативного контроля качества сырья и продуктов маслоблоков на нефтеперерабатывающих заводах.

Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета, отличающийся тем, что координаты цвета R, G и B нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по формуле: где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C);R, G, B - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 107.
10.04.2015
№216.013.3e97

Способ получения клеевой композиции для липких лент, содержащих дихлорциклопропанированные 1,2-полибутадиены

Изобретение относится к области получения клеевых композиций, используемых в производстве липких поливинилхлоридных (ПВХ) лент, предназначенных для обмотки газо- и нефтепроводов в качестве изолирующего и защитного покрытия, а также для проведения ремонтных работ. Клеевая композиция, включающая...
Тип: Изобретение
Номер охранного документа: 0002547511
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5a09

Метанофуллерены в качестве органических материалов для солнечных батарей

Изобретение относится к полупроводниковым преобразователям солнечной энергии в электрическую и тепловую и может быть использовано в электрических устройствах, например солнечных батареях, которые имеют формирующие структуры на основе композиционных материалов. В частности, изобретение относится...
Тип: Изобретение
Номер охранного документа: 0002554590
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a47

Способ получения кобальтита лития

Изобретение относится к химической промышленности и может быть использовано для изготовления катодного материала в литий-ионных аккумуляторах. Способ включает смешение растворов нитратов лития и кобальта(II) в мольном соотношении 1:1 при добавлении нитрата пиридина, взятого в мольном...
Тип: Изобретение
Номер охранного документа: 0002554652
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bba

Реагент для обработки буровых растворов

Изобретение относится к области составов для нефтяной и газовой промышленности и может быть применено в производстве реагентов для обработки буровых растворов, используемых при бурении нефтяных и газовых скважин. Реагент для обработки буровых растворов содержит феррохромлигносульфонат 94-96...
Тип: Изобретение
Номер охранного документа: 0002555023
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e7e

Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)

Группа изобретений относится к области нефтедобывающей промышленности и может быть использована для повышения нефтеотдачи пласта при разработке обводненных залежей с вязкой нефтью и битума на поздней стадии разработки. Способ включает вскрытие пласта с возможностью перевода добывающей скважины...
Тип: Изобретение
Номер охранного документа: 0002555731
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62f1

Терморезистивный материал на основе асфальта пропановой деасфальтизации

Изобретение относится к области электронной техники и может быть использовано в технологии получения терморезистивных материалов для приборов, предназначенных для термостатирования объектов при фиксированных значениях температуры, например терморезисторов, нагревательных элементов и регуляторов...
Тип: Изобретение
Номер охранного документа: 0002556876
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.71d3

Способ определения физико-химических свойств многокомпонентных углеводородных систем

Изобретение относится к определению физико-химических свойств веществ и материалов: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения многокомпонентных углеводородных систем. Сущность способа заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002560709
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7908

Способ диагностики опухолей головного мозга

Изобретение относится к медицине и может быть использовано для диагностики опухолей головного мозга (ОГМ). Для этого путем электронной феноменологической спектроскопии измеряют оптическую плотность плазмы крови человека в видимой и ультрафиолетовой области спектра. При этом предварительно...
Тип: Изобретение
Номер охранного документа: 0002562573
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7bad

Комплексное соединение 6-метилурацила с карбоксилсодержащим органическим соединением и способ его получения

Изобретение относится к получению комплекса 6-метилурацила с пектином, который может быть использован в медицине и фармацевтической промышленности, формулы: Предложенное комплексное соединение проявляет противоязвенную активность и эффективно в качестве основного действующего вещества при...
Тип: Изобретение
Номер охранного документа: 0002563258
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bae

Способ получения малеинизированных 1,2-полибутадиенов

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул ангидридные группы. Способ получения малеинизированных 1,2-полибутадиенов заключается во взаимодействии раствора синдиотактического 1,2-полибутадиена с...
Тип: Изобретение
Номер охранного документа: 0002563259
Дата охранного документа: 20.09.2015
Показаны записи 51-60 из 117.
10.04.2015
№216.013.3e97

Способ получения клеевой композиции для липких лент, содержащих дихлорциклопропанированные 1,2-полибутадиены

Изобретение относится к области получения клеевых композиций, используемых в производстве липких поливинилхлоридных (ПВХ) лент, предназначенных для обмотки газо- и нефтепроводов в качестве изолирующего и защитного покрытия, а также для проведения ремонтных работ. Клеевая композиция, включающая...
Тип: Изобретение
Номер охранного документа: 0002547511
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41de

Способ количественного определения метанофуллеренов в реакционной смеси методом уф- спектроскопии

Изобретение относится к способу количественного определения метанофуллеренов различных степеней замещения в реакционной смеси методом УФ-спектроскопии, заключающемуся в снятии УФ-спектров, построении калибровочных графиков на основе значений второй производной спектра, нахождении по ним...
Тип: Изобретение
Номер охранного документа: 0002548360
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4365

Способ определения концентрации катионов цинка в сыворотке крови с одновременным определением соотношения катионов цинка и меди в той же пробе

Изобретение относится к области медицинской биохимии и представляет собой способ определения концентрации катионов цинка в сыворотке крови с одновременным определением соотношения катионов цинка и катионов меди, включающий использование в качестве основного реагента раствор дитизона в...
Тип: Изобретение
Номер охранного документа: 0002548751
Дата охранного документа: 20.04.2015
27.06.2015
№216.013.5a09

Метанофуллерены в качестве органических материалов для солнечных батарей

Изобретение относится к полупроводниковым преобразователям солнечной энергии в электрическую и тепловую и может быть использовано в электрических устройствах, например солнечных батареях, которые имеют формирующие структуры на основе композиционных материалов. В частности, изобретение относится...
Тип: Изобретение
Номер охранного документа: 0002554590
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a47

Способ получения кобальтита лития

Изобретение относится к химической промышленности и может быть использовано для изготовления катодного материала в литий-ионных аккумуляторах. Способ включает смешение растворов нитратов лития и кобальта(II) в мольном соотношении 1:1 при добавлении нитрата пиридина, взятого в мольном...
Тип: Изобретение
Номер охранного документа: 0002554652
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bba

Реагент для обработки буровых растворов

Изобретение относится к области составов для нефтяной и газовой промышленности и может быть применено в производстве реагентов для обработки буровых растворов, используемых при бурении нефтяных и газовых скважин. Реагент для обработки буровых растворов содержит феррохромлигносульфонат 94-96...
Тип: Изобретение
Номер охранного документа: 0002555023
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e7e

Способ разработки обводненных залежей нефти свч электромагнитным воздействием (варианты)

Группа изобретений относится к области нефтедобывающей промышленности и может быть использована для повышения нефтеотдачи пласта при разработке обводненных залежей с вязкой нефтью и битума на поздней стадии разработки. Способ включает вскрытие пласта с возможностью перевода добывающей скважины...
Тип: Изобретение
Номер охранного документа: 0002555731
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.62f1

Терморезистивный материал на основе асфальта пропановой деасфальтизации

Изобретение относится к области электронной техники и может быть использовано в технологии получения терморезистивных материалов для приборов, предназначенных для термостатирования объектов при фиксированных значениях температуры, например терморезисторов, нагревательных элементов и регуляторов...
Тип: Изобретение
Номер охранного документа: 0002556876
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.71d3

Способ определения физико-химических свойств многокомпонентных углеводородных систем

Изобретение относится к определению физико-химических свойств веществ и материалов: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения многокомпонентных углеводородных систем. Сущность способа заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002560709
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7908

Способ диагностики опухолей головного мозга

Изобретение относится к медицине и может быть использовано для диагностики опухолей головного мозга (ОГМ). Для этого путем электронной феноменологической спектроскопии измеряют оптическую плотность плазмы крови человека в видимой и ультрафиолетовой области спектра. При этом предварительно...
Тип: Изобретение
Номер охранного документа: 0002562573
Дата охранного документа: 10.09.2015
+ добавить свой РИД