×
13.01.2017
217.015.89be

Результат интеллектуальной деятельности: СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ НЕМЕТАЛЛИЧЕСКИХ ПЛАСТИН

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе обработки и повышение выхода годных пластин. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, зависящей от температуры отжига, начальной температуры пластины, удельной теплоемкости и плотности материала пластины, а также показателя поглощения материала пластины на длине волны лазерного излучения, при этом осуществляют предварительный нагрев пластины до определенной температуры. 1 ил.

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов.

Известен способ обработки неметаллических материалов, применяемый для аморфизации кремния и заключающийся в облучении поверхности пластины импульсом лазерного излучения [1] с плотностью энергии, достаточной для плавления поверхностного слоя. Известен также способ обработки неметаллических материалов, применяемый для отжига ионно-легированного кремния [2]. Недостатком указанных способов является то, что они не учитывают термоупругие напряжения, возникающие в пластинах в процессе обработки и могущие привести к разрушению пластин.

Также известен способ обработки неметаллических материалов [3], в котором обработка пластин осуществляется путем облучения поверхности импульсом лазерного излучения. Временная форма импульса описывается определенным соотношением в зависимости от плотности потока энергии лазерного излучения, констант b1 и b2, характеризующих фронт и спад лазерного импульса, от длительности лазерного импульса, текущего времени от начала воздействия, плотности энергии и максимального значения плотности потока лазерного излучения в импульсе. Эффект достигается тем, что формируют лазерный импульс, временная форма которого описывается соотношением

где q(t) - плотность мощности лазерного излучения, Вт/м2;

τ - длительность импульса лазерного излучения, с;

b1 и b2 - константы, характеризующие фронт и спад лазерного импульса;

е - основание натурального логарифма;

t - текущее время от начала воздействия, с.

Указанный способ позволяет минимизировать термоупругие напряжения в поглощающем слое материала пластины при воздействии лазерных импульсов длительностью менее 10-6 с, когда рассматривается динамическая задача термоупругости [4]. Но этот способ не работает, когда длительность лазерного импульса составляет ~(10-2-10-6) с и необходимо рассматривать квазистатическую задачу термоупругости.

Известен способ лазерной обработки [5], в частности, используемый для лазерного отжига неметаллических пластин, в котором плотность энергии на поверхности пластины определяют по соотношению

где - плотность энергии лазерного излучения, требуемая для нагрева поверхности пластины до температуры отжига;

- температура отжига пластины;

Т0 - начальная температура пластины;

c и ρ - удельная теплоемкость и плотность материала пластины соответственно;

R - коэффициент отражения материала пластины;

- показатель поглощения материала пластины на длине волны лазерного излучения.

Применение лазерного отжига приводит к релаксации остаточных напряжений в приповерхностном слое пластин, возникающих при их шлифовке и полировке абразивом, а также устраняет неоднородности структуры при напылении тонких пленок, что позволяет повысить лучевую стойкость пластин, используемых в лазерной технике.

Этот способ выбран в качестве прототипа. Недостатком указанного способа является то, что он не позволяет исключить режимы воздействия, при которых возможно разрушение пластин термоупругими напряжениями и повысить выход годных пластин в процессе лазерной обработки.

Техническим результатом изобретения является исключение разрушения пластин из полупроводниковых, керамических и стеклообразных материалов термоупругими напряжениями в процессе лазерного отжига и повышение выхода годных пластин.

Технический результат достигается тем, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью энергии, определяемой по уравнению

где - температура отжига пластины;

Т0 - начальная температура пластины;

c и ρ - удельная теплоемкость и плотность материала пластины соответственно;

R - коэффициент отражения материала пластины;

- показатель поглощения материала пластины на длине волны лазерного излучения,

осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению

где σР - предел прочности материала пластины на растяжение;

ν - коэффициент Пуассона материала пластины;

h - толщина пластины;

Е - модуль Юнга;

αT - коэффициент линейного расширения материала пластины;

e - основание натурального логарифма.

Ниже приводится более подробное описание заявляемого способа лазерной обработки неметаллических пластин со ссылкой на фиг. 1. Сущность способа состоит в следующем. Для предотвращения изгиба пластины при обработке ее, как правило, свободно защемляют по контуру [5, 6]. Пластина полностью накрывается лазерным излучением. В этом случае температурное поле в пластине будет изменяться только по ее толщине. В свободно защемленной по контуру пластине под действием температурного поля, изменяющегося только по толщине пластины, возникают термоупругие напряжения [6]:

где

σx(z,t), σy(z,t) - термоупругие напряжения в пластине, зависящие от координаты z и времени t;

εT - средняя по толщине пластины температура;

x, y, z - координаты, причем z - координата, отсчитываемая от облучаемой поверхности пластины вглубь;

T(z,t) - температура в точке с координатой z в момент времени t.

Анализ уравнения (4) показывает, что термоупругие напряжения в пластине являются сжимающими там, где текущая температура выше средней температуры по толщине пластины, и растягивающими - там, где текущая температура ниже средней по толщине пластины. Так как хрупкие материалы, к которым относятся полупроводниковые, керамические стеклообразные материалы, имеют предел прочности на растяжение в 5-10 раз меньше, чем на сжатие [7], дальнейший анализ проведем для растягивающих напряжений.

Если выполняется условие

то температурное поле в пластине к концу действия лазерного импульса будет определяться уравнением [8]

α - коэффициент температуропроводности материала пластины;

τu - длительность лазерного импульса;

- плотность энергии лазерного излучения;

q(t) - плотность мощности лазерного излучения.

Условие (6) для большинства полупроводниковых, стеклообразных и керамических материалов выполняется при τu<0,01 с.

Подставив уравнение (7) в (4) и (5) и выполнив математические преобразования, получим соотношение для расчета термоупругих напряжений в пластине в момент окончания воздействия лазерного импульса, когда градиент температуры и термоупругие напряжения максимальны

Анализ уравнения (8) показывает, что максимальные растягивающие напряжения возникают в сечении z=h, где температура минимальна. Из (8) получим уравнение для расчета плотности энергии, приводящей к разрушению пластины термоупругими напряжениями

Плотность энергии, необходимую для достижения облучаемой поверхностью температуры отжига, рассчитывают по уравнению (1)

Разделив (9) на (1) и поставив условие , получим критерий термопрочности свободно защемленной по контуру пластины при ее импульсном нагреве объемным источником

Левая часть неравенства (10) является безразмерной константой, характеризующей отношение предела прочности материала пластины к максимально возможным термоупругим напряжениям в ней. Правая часть - функция безразмерного параметра . Если неравенство (10) выполняется, то облучаемая поверхность пластины может быть нагрета до температуры отжига без разрушения пластины термоупругими напряжениями. В противном случае разрушение пластины термоупругими напряжениями произойдет при меньшей плотности энергии, чем требуется для нагрева ее поверхности до температуры отжига. Исследования на экстремум функции показывают, что функция является выпуклой и достигает максимального значения, равного 0,3, при . Графическое решение неравенства (10) для пластины из цветного оптического стекла ЖЗС12 представлено на фиг. 1. Исходные данные по свойствам оптического стекла ЖЗС12 взяты из [9]. Видно, что существует область изменения безразмерного параметра , в которой разрушение пластины термоупругими напряжениями происходит при меньшей плотности энергии, чем требуется для отжига облучаемой поверхности. Следовательно, пластины толщиной от 0,028 см до 0,9 см будут разрушены термоупругими напряжениями при воздействии лазерного излучения с длиной волны 1,06 мкм (показатель поглощения на указанной длине волны для стекла ЖЗС12 составляет 10 см-1 [9]). В этом случае необходимо предварительно нагреть пластину до температуры, при которой критерий термопрочности будет выполняться. Из уравнения (10) найдем значение температуры, до которой необходимо нагреть пластину

Нагрев пластины осуществляют в муфельной печи до требуемой для выполнения критерия термопрочности температуры Т0 и выдерживают необходимое время для выравнивания температуры по толщине пластины. Время выдержки определяют из критерия Фурье [6], определяющего тепловую инерцию пластины

где tB - время выдержки пластины при требуемой для выполнения критерия термопрочности температуре.

После выдержки пластины в муфельной печи осуществляют воздействие на нее лазерного импульса с плотностью энергии, определяемой по уравнению (1). В результате воздействия лазерного импульса температура поверхности пластины достигнет температуры отжига.

Пример осуществления способа. Необходимо провести лазерный отжиг поверхности пластины из цветного оптического стекла ЖЗС12 толщиной 0,7 см. Показатель поглощения данной марки стекла для излучения с длиной волны 1,06 мкм составляет 10 см-1 [9]. Безразмерный параметр χh=7. Начальную температуру пластины примем равной 300 К, температуру отжига - 1100 К. Расчет по уравнению (1) показывает, что для отжига пластины потребуется плотность энергии в лазерном импульсе 146 Дж/см2. Расчет по уравнению (9) показывает, что для разрушения термоупругими напряжениями пластины толщиной 0,7 см требуется плотность энергии 120 Дж/см2, то есть меньше, чем для отжига. Рассчитаем левую и правую части критерия термопрочности (10). Правая часть неравенства (10) при χh=7 составляет 0,14. Левая часть неравенства (10) составляет 0,115. Видно, что критерий термопрочности не выполнен. Пластина будет разрушена термоупругими напряжениями. Чтобы этого не произошло, необходимо пластину предварительно нагреть в муфельной печи до температуры не менее 453 К и выдержать при этой температуре не менее 250 секунд для выравнивания температуры по толщине пластины. Расчеты выполнены по уравнениям (11) и (12) при следующих исходных данных [9, 10]: σP=70 МПа, Е=80 ГПа, ν=0,2, αT=7,6·10-6 К-1, а=6·10-3 см2/с. Затем воздействуют на пластину лазерным импульсом с плотностью энергии не более 120 Дж/см2. Расчеты проведены по уравнению (1). Температура поверхности пластины при этом достигает температуры отжига, а термоупругие напряжения не превысят предела прочности материала.

Таким образом, реализация предложенного способа лазерной обработки неметаллических пластин приводит к исключению их разрушения термоупругими напряжениями в процессе лазерного отжига и повышению выхода годных пластин.

Литература

1. Боязитов P.M. и др. Аморфизация и кристаллизация кремния субнаносекундными лазерными импульсами. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с 24.

2. Кузменченко Т.А. и др. Лазерный отжиг ионно-легированного кремния излучением с длиной волны 2,94 мкм. Тезисы докладов Всесоюзной конференции по взаимодействию оптического излучения с веществом. Ленинград. 11-18 марта 1988 г., с 29.

3. Атаманюк В.М., Коваленко А.Ф., Левун И.В., Федичев А.В. Способ обработки неметаллических материалов. Патент RU 2211753 С2. Опубл. 10.09.2003. Бюл. №25.

4. Коваленко А.Ф. Экспериментальная установка для исследования влияния параметров лазерного импульса на разрушение неметаллических материалов // Приборы и техника эксперимента. - 2004. №4. - С. 119-124.

5. Коваленко А.Ф. Неразрушающие режимы импульсного лазерного отжига стеклянных и керамических пластин // Стекло и керамика. 2006. №7. С. 31-33.

6. Коваленко А.Д. Термоупругость. Киев, «Вища школа», 1973. - 216 с.

7. Феодосьев В.И. Сопротивление материалов. М.: Наука. 1986. - 512 с.

8. Лазерная и электронно-лучевая обработка материалов: Справочник / Н.Н. Рыкалин, А.А. Углов, И.В. Зуев, А.Н. Кокора. - М.: Машиностроение, 1985. - 496 с.

9. ГОСТ 9411 - 90. Стекло цветное оптическое. М.: Изд-во стандартов, 1992. 48 с.

10. Стекло / Под ред. H.М. Павлушина. М.: Стройиздат, 1973. 280 с.

Способ лазерной обработки неметаллических пластин, заключающийся в облучении их поверхности импульсом лазерного излучения с плотностью энергии ,где - температура отжига материала пластины;T - начальная температура пластины;c и ρ - удельная теплоемкость и плотность материала пластины соответственно;R - коэффициент отражения материала пластины;χ - показатель поглощения материала пластины на длине волны лазерного излучения,отличающийся тем, что осуществляют предварительный нагрев пластины до температуры, определяемой по уравнению где σ - предел прочности материала пластины на растяжение;ν - коэффициент Пуассона материала пластины;E - модуль Юнга;α - коэффициент линейного расширения материала пластины;e - основание натурального логарифма;h - толщина пластины.
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ НЕМЕТАЛЛИЧЕСКИХ ПЛАСТИН
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ НЕМЕТАЛЛИЧЕСКИХ ПЛАСТИН
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ НЕМЕТАЛЛИЧЕСКИХ ПЛАСТИН
СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ НЕМЕТАЛЛИЧЕСКИХ ПЛАСТИН
Источник поступления информации: Роспатент

Показаны записи 181-190 из 192.
09.06.2019
№219.017.79aa

Блок излучателя нейтронов

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, предназначенным для проведения геофизических исследований нефтяных, газовых и рудных скважин. Блок излучателя нейтронов содержит нейтронную трубку, схему питания нейтронной трубки с...
Тип: Изобретение
Номер охранного документа: 0002399977
Дата охранного документа: 20.09.2010
09.06.2019
№219.017.79c1

Датчик разности давлений

Изобретение относится к измерительной технике, а именно к тензорезистивным датчикам давления, и предназначено для измерения разности давления жидкости и газов. Техническим результатом изобретения является повышение стабильности датчика разности давлений. Датчик разности давления содержит...
Тип: Изобретение
Номер охранного документа: 0002395793
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7f6f

Генератор меченых нейтронов

Использование: для исследования или анализа материалов радиационными методами с измерением вторичной эмиссии с использованием нейтронов. Сущность: заключается в том, что генератор меченых нейтронов содержит герметичный корпус, в котором установлены источник ионов, источник газообразного...
Тип: Изобретение
Номер охранного документа: 0002467317
Дата охранного документа: 20.11.2012
09.06.2019
№219.017.7f9c

Электростатический экран

Изобретение относится к области электротехники, к источникам нейтронного и рентгеновского излучения и других подобных устройств, в частности к экранировке аппаратов и их деталей. Цилиндрический электростатический экран электрофизической аппаратуры выполнен из высокоомного материала композитов...
Тип: Изобретение
Номер охранного документа: 0002466473
Дата охранного документа: 10.11.2012
19.06.2019
№219.017.8b0b

Устройство дуговой защиты с определением местоположения и мощности электрической дуги

Использование: в области электротехники. Технический результат - расширение функциональных возможностей. Устройство содержит N фотодетекторов, подключенных к входам аналого-цифровых преобразователей (АЦП) микропроцессора, N выходов которого подключены к входам соответствующих N исполнительных...
Тип: Изобретение
Номер охранного документа: 0002446535
Дата охранного документа: 27.03.2012
29.06.2019
№219.017.9a92

Сигнализатор избыточного давления, способ формирования профиля мембраны для сигнализатора избыточного давления

Сигнализатор избыточного давления и способ формирования профиля мембраны для него относятся к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначены для предотвращения перегрузки. В корпусе сигнализатора избыточного давления, в котором...
Тип: Изобретение
Номер охранного документа: 0002245526
Дата охранного документа: 27.01.2005
29.06.2019
№219.017.9ff7

Комплекс программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности, за счет уменьшения задержки переключения на резерв при отказах сетевого оборудования и исключения потери данных. Комплекс программно-аппаратных средств автоматизации контроля и управления...
Тип: Изобретение
Номер охранного документа: 0002450305
Дата охранного документа: 10.05.2012
29.06.2019
№219.017.a0e2

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности, быстрое переключение на резервное оборудование, освобождение вычислительных ресурсов от задач управления резервированием. Он достигается тем, что в комплексе средств автоматизации...
Тип: Изобретение
Номер охранного документа: 0002431174
Дата охранного документа: 10.10.2011
29.06.2019
№219.017.a0f6

Комплекс резервируемых программно-аппаратных средств автоматизации контроля и управления

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение надежности системной шины, повышение скорости сбора данных технологического процесса, повышение отказоустойчивости. Он достигается тем, что в комплексе программно-аппаратных средств...
Тип: Изобретение
Номер охранного документа: 0002430400
Дата охранного документа: 27.09.2011
23.02.2020
№220.018.04da

Способ прецизионных измерений амплитуды гармонических колебаний сверхнизких и звуковых частот при сильной зашумленности сигнала

Изобретение относится к метрологии, в частности к способам измерений амплитуды. Согласно способу выбирают время измерения собственных шумов применяемого регистратора; осуществляют предварительную градуировку регистратора по цене наименьшего разряда квантования; получают среднее квадратическое...
Тип: Изобретение
Номер охранного документа: 0002714861
Дата охранного документа: 19.02.2020
Показаны записи 161-164 из 164.
20.05.2019
№219.017.5d15

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозных отверстий в пластинах из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два. Воздействуют на обе стороны пластины пучками с равной плотностью энергии, которую рассчитывают по...
Тип: Изобретение
Номер охранного документа: 0002688036
Дата охранного документа: 17.05.2019
20.06.2019
№219.017.8d36

Способ лазерного отжига неметаллических материалов

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов. Облучают поверхность лазерным импульсом прямоугольной временной формы с требуемой плотностью энергии. Диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002692004
Дата охранного документа: 19.06.2019
20.06.2019
№219.017.8d79

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. В способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного...
Тип: Изобретение
Номер охранного документа: 0002691923
Дата охранного документа: 18.06.2019
25.07.2019
№219.017.b840

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в предварительном подогреве...
Тип: Изобретение
Номер охранного документа: 0002695440
Дата охранного документа: 23.07.2019
+ добавить свой РИД