×
13.01.2017
217.015.8837

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ ОРГАНИЧЕСКИХ ОТХОДОВ

Вид РИД

Изобретение

Аннотация: Способ переработки твердых бытовых отходов и/или производственных отходов, выбранных из природных и синтетических полимеров в газообразные, жидкие и твердые продукты посредством одновременного воздействия ускоренными электронами и температурой. Переработку осуществляют в проточном режиме, меняя просвет между выпускным окном ускорителя и поверхностью сырья при температуре, которая обеспечивает плавление не менее 30% фракции синтетических полимеров, но не выше температуры, которая обеспечивает начало сухой перегонки более 30% фракции природных полимеров при традиционном нагреве не более чем на 30 С, подвергая летучие продукты фракционной конденсации за пределами зоны облучения. Использование данного способа обеспечивает возможность безотходной переработки ТБО. 10 з.п. ф-лы, 2 табл.

Изобретение относится к области переработки твердых бытовых отходов (ТБО) и производственных отходов (ПО), образующихся в результате различной деятельности человека, имеющих в своем составе полимеры природного и синтетического происхождения, и может быть использовано при получении жидкого и твердого топлива, базовых продуктов нефтехимии, в том числе мономеров, синтезгаза и сырья для производства композиционных строительных материалов.

Известен способ переработки растительного сырья, выбираемого из сырья на основе лигнина, крахмала, целлюлозы, полиоз, гуминовых соединений или их производных, в газообразные, жидкие и твердые топливные смеси посредством сухой перегонки, когда на растительное сырье одновременно воздействуют ионизирующим излучением и температурой, а летучие продукты отгоняют из зоны воздействия в токе газа или пара (прототип) (1) [Патент РФ №2338769, Способ переработки растительного сырья, опубл. 20.11.2008].

Однако данным известным способом (1) получают преимущественно углекислоту и трудноразделимую смесь воды, циклических и ациклических карбонильных соединений, требующих дополнительного гидрирования и/или алкилирования в токе водорода или газообразных алканов. При этом в результате стабилизации получают оксигенированное альтернативное топливо, нестабильное при хранении. Данный известный способ непригоден для переработки смесей природных и синтетических полимеров, поскольку в нем предполагается, что сырье состоит из полисахаридов и полифенолов (с близкой температурой начала сухой перегонки и близкими температурами кипения продуктов деструкции). В реальных ТБО и ПО фракция полимеров природного происхождения может быть миноритарной и иметь иную химическую структуру.

Известен также способ переработки синтетических полимеров путем воздействия ионизирующим излучением и температурой с образованием продуктов радиолитической деструкции (2) [Woods R.J., Pikaev А.K. Applied radiation chemistry: radiation processing. NY.: Wiley. 1994, 535 P.].

Однако данным известным способом можно получить уменьшение средней мольной массы облучаемых полимеров при сохранении их химической природы, а также небольшое количество летучих и жидких хозяйственно ценных углеводородов, причем только в смеси с не утилизируемыми продуктами радиолиза.

В известном способе (2), основанном на применении высокотемпературного облучения, исходное сырье вводят в зону воздействия и выдерживают в ней в течение отрезка времени, достаточного для образования продуктов радиолиза, которые, оставаясь в этой зоне, участвуют в регенерации исходных молекул или вступают в новые реакции взаимодействия с образованием новых продуктов, в том числе и преимущественно нежелательных. Только после завершения периода воздействия ионизирующего излучения реакционную массу выводят из реактора и выделяют из нее продукты радиолиза, сложная смесь которых требует проведения сложной процедуры их разделения. При этом наиболее ценная фракция углеводородов составляет лишь незначительную долю среди продуктов радиолиза (≤5 вес. %).

Техническим результатом, достигаемым при реализации настоящего изобретения, является возможность безотходной или малоотходной переработки ТБО и/или ПО, синергетическое увеличение выхода продуктов при совместном разложении природной и синтетической фракций, существенное увеличение стабильности получаемых гибридных продуктов, упрощение их фракционного разделения, расширение ассортимента и повышение выхода хозяйственно ценных продуктов. В результате реализации изобретения получаются полупродукты для тяжелого органического синтеза, в том числе мономеры, топливные смеси и компоненты, наполнители и реагенты для производства композиционных строительных материалов. При этом переработка охватывает крупнотоннажное, малоутилизируемое и важное с хозяйственной точки зрения сырье - бытовые и производственные отходы, состоящие из широкого ассортимента полимеров природного и синтетического происхождения. К тому же настоящее изобретение позволяет получать из подходящего сырья стабилизированные топливные продукты, идентичные топливу нефтяного происхождения.

Технический результат достигается тем, что переработку нового комплексного сырья при одновременном воздействии ускоренными электронами и температурой осуществляют в проточном режиме, меняя просвет между выпускным окном ускорителя и поверхностью сырья, при температуре, обеспечивающей плавление не менее 30% фракции синтетических полимеров, но не выше температуры, обеспечивающей начало сухой перегонки более 30% фракции природных полимеров, при радиационном нагреве не более чем на 30°С, подвергая летучие продукты фракционной конденсации за пределами зоны облучения. Таким образом, конкретная температура в зоне воздействия зависит от состава ТБО и/или ПО, подлежащих переработке.

Впервые установлено, что воздействие на смесь природных и синтетических полимеров дает положительные эффекты, обусловленные переносом заряда, энергии и радикальных состояний между компонентами перерабатываемой смеси, так, что компонент, выполняющий главную функцию химической и физической защиты в смеси, подвергается наибольшему радиационно-термическому воздействию. Как следствие, разложение смеси не требует высоких температур, характерных для ее пиролиза. При этом ароматические продукты деструкции препятствуют протеканию радиолитических и пост-радиационных процессов обратного синтеза менее стабильных компонентов.

Изменение просвета между выпускным окном ускорителя и поверхностью сырья позволяет увеличить эффективный выход летучих продуктов фрагментации сырья за счет понижения выхода рекомбинации макрорадикалов на стадии образования углефицированных продуктов.

В предлагаемом техническом решении нагрев основной массы ТБО и ПО до температуры начала сухой перегонки фракции природных полимеров не допускается - не менее 70% фракции природных полимеров должны иметь температуру начала сухой перегонки выше, чем температура в зоне воздействия. При этом не менее 30% фракции синтетических полимеров должно быть в расплавленном состоянии. Для достижения этих условий может использоваться компаундирование сырья - добавление той или иной недостающей фракции.

В конкретном исполнении неплавкое сырье целесообразно подавать в зону воздействия в измельченном виде - кусочками, размеры которых в любом измерении не превышают 15 мм.

Рациональным приемом при переработке является задержка твердых углефицированных продуктов (обугленной фракции) в зоне воздействия по сравнению с временем пребывания летучих продуктов. В частности, свежее сырье целесообразно подавать на слой уже образовавшейся горячей обугленной фракции - это позволит увеличить десорбцию летучих продуктов из обугленной фракции и сэкономить энергию.

В конкретном исполнении облучение осуществляют мультиэнергетическим электронным пучком, где энергия может варьироваться в пределах не ниже 0.1 МэВ и не выше 5 МэВ, разброс энергии не меньше 9% от средней величины, а мощность дозы не выше 100 кГр/с.

Целесообразно через зону воздействия, в том числе, через слой перерабатываемого сырья, пропускать поток газа-носителя, облегчающий вынос летучих продуктов в зону их фракционной конденсации. Газ не должен содержать атомов кислорода, чтобы минимизировать процессы окисления перерабатываемого сырья.

Для управления составом летучих продуктов переработки ТБО и/или ПО, целесообразно часть уже отогнанных продуктов отделять и смешивать с исходным сырьем или газом-носителем для инициирования вторичных радиолитических процессов, дающих более ценные продукты.

Во избежание излишней углефикации сырья в зоне воздействия, процесс переработки проводят при давлении не более 0.16 МПа, плотности тока в электронном пучке не более 100 мкА/см2 и при насыпной плотности сырья не выше 0.5 кг/дм3.

В конкретном исполнении рекомендуется воздействие излучением и температурой сочетать с ультразвуковым воздействием или использовать импульсное излучение с плотностью тока в импульсе выше 1 А/см2.

Целесообразно использовать разную интенсивность облучения в зоне воздействия, чередуя зоны с высокой и ослабленной интенсивностью и меняя направление движения сырья между этими зонами.

В конкретном исполнении селективность воздействия и извлечение продуктов фрагментации регулируют за счет дополнительного воздействия гомогенными или гетерогенными катализаторами.

При любом варианте переработки фракция природных полимеров должна составлять не менее 10% от массы смеси.

Степень утилизации ТБО и ПО, стабильность получаемых продуктов и выход ценных фракций можно значительно повысить, а технологию их получения и фракционного разделения можно значительно упростить, если переработку комплексного сырья при одновременном воздействии ионизирующим излучением и температурой осуществлять в проточном режиме, меняя просвет между выпускным окном ускорителя и поверхностью сырья, при температуре, обеспечивающей плавление не менее 30% фракции синтетических полимеров, но не выше температуры начала сухой перегонки не менее 30% фракции природных полимеров, при радиационном нагреве не более чем на 30°С, подвергая летучие продукты фракционной конденсации за пределами зоны облучения.

Конечные продукты представляют собой базовые продукты нефтехимии, в том числе мономеры, синтезгаз, сырье для производства композиционных строительных материалов, а также различные виды топлива. Это существенно расширяет применимость заявляемого способа и его продуктов в народном хозяйстве, одновременно с решением важной задачи по утилизации ТБО и ПО.

Новое комплексное воздействие на сложную многокомпонентную смесь полимеров обеспечивает самонастраиваемое целенаправленное разложение компонентов сырья, расширение управляющих факторов переработки, а также возможность проведения конверсии при температуре ниже точки начала пиролиза. Ценные летучие продукты переработки, образующиеся в зоне воздействия, препятствуют процессу разложения сырья из-за своей невысокой радиационной стойкости, поэтому их следует быстро удалять из зоны воздействия, а фракционную конденсацию проводить за пределами этой зоны.

Ниже приведены примеры, иллюстрирующие заявляемое техническое решение.

Пример 1. В качестве сырья используют твердые бытовые отходы, включающие 45 мас. % природных полимеров (бумага, картон, натуральные ткани и др.) и 55 мас. % синтетических полимеров (упаковочные пленки, пластиковые контейнеры, синтетические ткани и т.п.). Температура начала плавления фракции синтетических полимеров - 92°С (30% - 180°С). Температура начала сухой перегонки природных полимеров - 270°С (30% - 270°С). Смесь при температуре 200°С и атмосферном давлении подают в зону облучения ускоренными электронами, генерируемыми электронным ускорителем, при мощности дозы 2 кГр/с и максимальной энергии электронов 2 МэВ. При таком облучении дополнительный радиационный нагрев сырья составляет 28°C. Летучие продукты в виде паров и газов отводят из зоны воздействия и конденсируют в виде 3 фракций. Первая представляет собой смесь легких жидких оксигенатов, пригодную в качестве технических растворителей и разбавителей. Вторая содержит мономеры с преобладанием фурфурола и его производных. Третья фракция состоит из алифатических и ароматических углеводородов, обладающих высокой горючестью. Твердый обугленный остаток образуется с выходом 26 мас. %. Он не имеет запаха и содержит 92 мас. % атомов углерода и 6.5 мас. % атомов кислорода. По результатам тестирования он может использоваться как твердое топливо или как наполнитель для получения композитов. Газообразные продукты включают Н2, СО, СО2 и легкие осколочные алканы. Такая смесь может быть пригодна для использования в каталитическом синтезе. Таким образом, при полной конверсии сырья получено 98 мас. % целевых продуктов, включая 26 мас. % горючего углефицированного остатка, 19 вес. % синтез-газа и 53 мас. % жидких органических продуктов; на долю минеральной золы приходится 2 мас. %.

Результаты приведены в табл. 1 и 2, где Е - энергия потока электронов; R - мощность поглощенной дозы; Т - максимальная температура в зоне воздействия, Р - абсолютное давление, Н - температура радиационного нагрева, L - изменение просвета между выпускным окном ускорителя и поверхностью сырья, D - максимальный размер частиц сырья, ρ - насыпная плотность сырья, [S] - доля фракции синтетических полимеров, [N] - доля фракции природных полимеров, S30 - температура плавления 30% фракции синтетических полимеров, N30 - температура сухой перегонки 30% фракции природных полимеров.

Пример 2. По методике примера 1 подвергается переработке смесь ТБО и ПО при более низкой энергии электронов. Условия проведения процесса и полученные результаты представлены в табл. 1.

Пример 3. По методике примера 1 подвергается переработке смесь ТБО и ПО, осуществляя 50%-ную задержку углефицированного продукта в зоне воздействия и помещая свежее сырье на слой горячего угля. Условия проведения процесса и полученные результаты представлены в таблице 1.

Пример 4. По методике примера 1 подвергается переработке ТБО. В качестве источника ионизирующего излучения использован линейный электронный ускоритель. В ходе воздействия возвращали 3% фракции фуранов в зону воздействия. Условия проведения процесса и полученные результаты представлены в таблице 1.

Пример 5. По методике примера 1 подвергается переработке смесь ТБО и ПО. В качестве источника ионизирующего излучения использован ускоритель, генерирующий мультиэнергетический электронный пучок. Условия проведения процесса и полученные результаты представлены в табл. 1.

Пример 6. ТБО обрабатывается по методике примера 1, но используются короткие импульсы электронов с плотностью тока в импульсе 10 А/см2, сопровождаемые ультразвуковым воздействием. Условия проведения процесса и полученные результаты представлены в табл. 2.

Пример 7. По методике примера 2 перерабатывается смесь ТБО и ПО, трехкратно меняя направление движения сырья в зоне воздействия от области высокой интенсивности облучения к области низкой интенсивности. Условия проведения процесса и полученные результаты представлены в табл. 2.

Пример 8. Смесь ТБО и ПО обрабатывается по методике примера 3 в присутствии солей никеля. Условия проведения процесса и полученные результаты представлены в табл. 2.

Пример 9. По методике примера 4 подвергаются переработке ТБО, но возврату в зону воздействия подлежало 5% отгоняемой фракции фенолов. Условия проведения процесса и полученные результаты представлены в табл. 2.

Пример 10. Смесь ТБО и ПО подвергается переработке по методике примера 5, но при 5-%-ном содержании фракции природных полимеров в смеси. В результате, выход жидких продуктов уменьшается, но возрастает выход угля, что энергетически неоправданно. Условия проведения процесса и полученные результаты представлены в табл. 2.

Изменение условий нагрева заметно понижает выход целевой конверсии и стабильность конечных жидких продуктов или приводит к чрезмерно высокому выходу образования воды или нецелевых газов. Применение газа-носителя, мультиэнергетического излучения, измельчения сырья, частичного возврата отогнанных продуктов в зону воздействия, ультразвукового воздействия и катализаторов позволяет получать наиболее востребованный продукт, наилучшим образом выводить целевой продукт из обугливающегося сырья, регулировать молекулярно-массовое распределение в продуктах и сокращать время сепарации реакционной смеси.

Таким образом, способ согласно заявляемому техническому решению обеспечивает целенаправленное превращение комплексных твердых органических отходов в хозяйственно ценные газообразные, твердые и жидкие продукты. Это особенно ценно при утилизации крупнотоннажных ТБО и ПО.

В настоящее время ТБО и ПО практически не используются для производства базовых химических продуктов и полупродуктов для тяжелого органического синтеза. Эти отходы предпочитают захоранивать, сжигать или подвергать дорогостоящей и трудоемкой сортировке, не обеспечивающей сколь-нибудь значимую степень утилизации.

Заявляемый способ позволяет с помощью компактных установок максимально полно и просто утилизировать ТБО и/или ПО, получая широкий ассортимент ценных органических соединений, являющихся ключевым сырьем для топливного и реагентного обеспечения предприятий химической промышленности.

Заявляемый способ обеспечивает получение следующих результатов:

- выход ценных продуктов из перерабатываемого сырья превышает 90% и может достигать 99% от его массы; целевые продукты имеют широкое бытовое и промышленное применение в качестве моторного и иного топлива, а также полупродуктов для тяжелого органического синтеза;

- способ характеризуется экологической чистотой, поскольку не использует и не ориентирован на использование токсичных реагентов и его реализация не связана с появлением вредных воздействий на окружающую среду и производственный персонал; напротив, способ нацелен на максимально полную утилизацию крупнотоннажных отходов, загрязняющих окружающую среду;

- способ обеспечивает низкую энергоемкость и материалоемкость переработки сырья.

Источник поступления информации: Роспатент

Показаны записи 21-23 из 23.
19.01.2018
№218.016.0556

2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазин в качестве электродоактивного селективного ионофора для катиона лития в пластифицированных мембранах ионоселективных электродов

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических...
Тип: Изобретение
Номер охранного документа: 0002630695
Дата охранного документа: 12.09.2017
20.01.2018
№218.016.0f9a

Литий-ионный аккумулятор

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и...
Тип: Изобретение
Номер охранного документа: 0002633529
Дата охранного документа: 13.10.2017
21.07.2018
№218.016.7360

Способ остановки язвенных гастродуоденальных кровотечений

Изобретение относится к медицине, а именно к эндоскопической хирургии и рентгенхирургии, и касается остановки язвенных гастродуоденальных кровотечений. Способ включает чрескожную транскатетерную артериальную эмболизацию приносящих сосудов после установления источника кровотечения. При этом у...
Тип: Изобретение
Номер охранного документа: 0002661782
Дата охранного документа: 19.07.2018
Показаны записи 21-30 из 36.
19.01.2018
№218.016.0556

2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазин в качестве электродоактивного селективного ионофора для катиона лития в пластифицированных мембранах ионоселективных электродов

Изобретение относиться к 2,4,6-трис[(2-дифенилфосфорил)-4-этилфенокси]-1,3,5-триазину, который может быть использован в качестве селективного ионофора для катиона лития в пластифицированной полимерной мембране в ионоселективных электродах для определения концентраций иона лития в биологических...
Тип: Изобретение
Номер охранного документа: 0002630695
Дата охранного документа: 12.09.2017
20.01.2018
№218.016.0f9a

Литий-ионный аккумулятор

Изобретение относится к электротехнической промышленности, в частности к устройствам для непосредственного преобразования химической энергии в электрическую, а конкретно - к литий-ионному аккумулятору. Литий-ионный аккумулятор содержит разделенные пористым сепаратором с электролитом и...
Тип: Изобретение
Номер охранного документа: 0002633529
Дата охранного документа: 13.10.2017
10.05.2018
№218.016.3e7c

Адсорбционный газовый терминал

Изобретение относится к конструкции системы хранения и транспортировки природного газа в адсорбированном виде. Адсорбционный газовый терминал состоит из корпуса, выполненного в форме параллелепипеда, и расположенной внутри него конструкции из чередующихся ячеек, способных нести нагрузку,...
Тип: Изобретение
Номер охранного документа: 0002648387
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.44bc

Способ хранения природного газа в адсорбированном виде при пониженных температурах

Изобретение относится к хранению природного газа, или метана, или смеси метана с углеводородными соединениями С2, С3, С4, С5 или С6+, в том числе всеми насыщенными и ненасыщенными углеводородами под давлением в контейнере в адсорбированном виде, и дальнейшей транспортировке находящегося под...
Тип: Изобретение
Номер охранного документа: 0002650012
Дата охранного документа: 06.04.2018
21.07.2018
№218.016.7360

Способ остановки язвенных гастродуоденальных кровотечений

Изобретение относится к медицине, а именно к эндоскопической хирургии и рентгенхирургии, и касается остановки язвенных гастродуоденальных кровотечений. Способ включает чрескожную транскатетерную артериальную эмболизацию приносящих сосудов после установления источника кровотечения. При этом у...
Тип: Изобретение
Номер охранного документа: 0002661782
Дата охранного документа: 19.07.2018
02.03.2019
№219.016.d206

Мембрана ионоселективного электрода для определения ионов кальция

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а...
Тип: Изобретение
Номер охранного документа: 0002680865
Дата охранного документа: 28.02.2019
10.04.2019
№219.017.08ac

Способ переработки газообразных алканов

Изобретение относится к способу переработки газообразных алканов путем воздействия ионизирующим излучением на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют водород и конденсируемую фракцию, являющуюся целевым...
Тип: Изобретение
Номер охранного документа: 0002437919
Дата охранного документа: 27.12.2011
19.04.2019
№219.017.2fb0

Способ переработки растительного сырья

Изобретение относится к области получения газообразного, жидкого и/или твердого топлива и может быть использовано при утилизации отходов растительного происхождения на основе лигнина, крахмала, целлюлозы, полиозы, гуминовых соединений или их производных. Переработку растительного сырья,...
Тип: Изобретение
Номер охранного документа: 0002338769
Дата охранного документа: 20.11.2008
19.04.2019
№219.017.32ac

Состав для получения супергидрофобного покрытия

Изобретение относится к составам для получения супергидрофобного покрытия на силоксановом резиновом изоляторе. Предложен состав, включающий (% масс.): гидрофобизующий поверхность компонент - фторуглеводородный силан, содержащий гидролизуемые функциональные группы, общей формулы YCF (CF)...
Тип: Изобретение
Номер охранного документа: 0002400510
Дата охранного документа: 27.09.2010
24.05.2019
№219.017.5d8a

Мембрана ионоселективного электрода для определения ионов кадмия

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть...
Тип: Изобретение
Номер охранного документа: 0002688951
Дата охранного документа: 23.05.2019
+ добавить свой РИД