×
13.01.2017
217.015.86de

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ПРОЦЕССА ОКИСЛИТЕЛЬНОЙ АРОМАТИЗАЦИИ НИЗШИХ АЛКАНОВ

Вид РИД

Изобретение

№ охранного документа
0002603774
Дата охранного документа
27.11.2016
Аннотация: Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00, оксид галлия (III) (в пересчете на металл) 0,5-3,00, оксид германия (IV) (в пересчете на металл) 0,01-0,10; γ-оксид алюминия 10,00-30,00, цеолит типа пентасила в водородной форме - остальное, до 100. Технический результат заключается в повышении активности катализатора по отношению к выходу целевых ароматических углеводородов, его селективности, конверсии. 1 пр.

Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья, в частности к катализаторам ароматизации низших алканов в присутствии кислорода.

Ароматические углеводороды являются одним из главных базовых продуктов нефтехимии. С учетом возрастающей роли в промышленности процессов глубокой переработки нефтяного сырья, в том числе газового, особенно актуальной становится разработка катализаторов процесса ароматизации низших алканов.

Известны катализаторы ароматизации алканов, содержащих от одного до четырех углеродных атомов, путем контактирования с катализаторами, содержащими цеолиты и различные металлы, например платину на ZSM-5 (WO 2005/065393, 2005), церий или оксид церия, а также металл VIII группы или его оксид, например платину или оксид платины на цеолите (RU 2377230, 2009; US 7186871, 2007), цинк, церий, лантан, магний, железо, кальций (RU 2165293, 2001).

Процессу указанной каталитической ароматизации свойственен ряд недостатков, заключающийся в следующем:

- термодинамические особенности процесса обуславливают проведение ароматизации при высоких температурах, при этом температурный предел ограничен термической стабильностью сырья и продуктов реакции;

- существенная эндотермичность затрудняет поддержание заданной температуры и требует использования в промышленности межреакторного подогрева для поддержания необходимой температуры реакционной смеси;

- в процессе ароматизации катализаторы зауглероживаются и теряют активность, вследствие чего возникает необходимость периодичной регенерации. Для этого процесс проводят периодически, переключая реакторы с процесса ароматизации на окислительную регенерацию.

При этом значения конверсии исходного сырья и выхода ароматических углеводородов недостаточно высоки.

Проведение процесса ароматизации в присутствии кислорода позволяет снизить закоксовывание катализатора, что позволяет, в том числе, улучшить указанные показатели.

Более близким к изобретению является катализатор процесса окислительной ароматизации низших алканов с получением ароматических углеводородов окислением низших алканов, в частности этана, этансодержащих газов (RU 2523801, 2014).

Указанный катализатор представляет собой двухслойную композицию в виде смешанной оксидной Mo1.0V0.37Te0.17Nb0.12O3 составляющей, расположенной в проточном реакторе на входе газового сырья, и цеолита HZSM-5, расположенного далее по ходу движения сырья, при этом компоненты катализатора взяты в объемном соотношении 20-30 и 70-80 соответственно.

Способ проводят в присутствии кислорода, взятого в объемном соотношении этан: кислород, составляющем 60-70% об. и 30-40% об., соответственно. Смесь исходного сырья и кислорода подвергают контактированию с нагретым до 400-450°С катализатором, и процесс ароматизации проводят при атмосферном давлении и объемной скорости подачи газового сырья 1000-2000 ч-1.

Недостаток указанного катализатора заключается в недостаточно высокой его активности. Так, выход целевых ароматических углеводородов не превышает 22,2% масс., конверсия составляет 75,9% масс. Кроме того, известный катализатор теряет свою активность, не достигая суток работы.

Таким образом, указанный катализатор является недостаточно эффективным.

Задачей изобретения является повышение эффективности катализатора окислительной ароматизации низших алканов.

Поставленная задача достигается созданием катализатора окислительной ароматизации низших алканов, содержащего оксид цинка, оксид галлия, оксид германия, γ-оксид алюминия и высококремнеземный цеолит типа пентасила в водородной форме при следующем соотношении компонентов, % масс:

оксид цинка
(в пересчете на металл) 3,00-7,00
оксид галлия (в пересчете
на металл) 0,5-3,00
оксид германия
(в пересчете на металл) 0,01-0,10
γ-оксид алюминия 10,00-30,00
цеолит остальное, до 100

Достигаемый технический результат заключается в повышении активности катализатора по отношению к выходу целевых ароматических углеводородов, его селективности, конверсии, а также в увеличении времени активности катализатора.

Описываемый катализатор получают следующим образом.

В стеклянную широкогорлую колбу заливают водный раствор 0,05-0,2 н соляной кислоты и поочередно аккуратно переносят в колбу требуемое количество оксида германия, нитрата галлия и нитрата цинка. Смесь перемешивают стеклянной палочкой или вращением колбы до полного растворения. Затем засыпают цеолит. В случае если раствор не полностью покрывает цеолит доливают необходимое количество водного раствора соляной кислоты. После перемешивания в течение 5-30 минут колбу ставят на плитку и подвергают выпариванию. При постоянном помешивании палочкой или специализированной электропроводной мешалкой содержимое колбы упаривают досуха. В случае появления «разводов» на стенках колбы проводят дополнительное приливание количества водного раствора соляной кислоты и последующее ее выпаривание.

После выпаривания колбу ставят в сушильную печь, где нагревают до температуры разложения нитратов со скоростью не более 100°С/ч и выдерживают при конечной температуре 20-60 мин.

После прокалки подготовленного цеолита колбу охлаждают на воздухе. После охлаждения в колбу с цеолитом помещают оксид алюминия и раствор карбоксиметилцеллюлозы (КМЦ). После тщательного перемешивания в колбу приливают химически очищенную воду до состояния, пригодного для экструзии.

Подготовленную массу помещают в экструдер для получения экструдатов диаметром 2,0±0,2 мм. После экструдирования массу делят на экструдаты длиной 8±2 мм.

Окончательную прокалку массы осуществляют при температуре 500-600°С в течение 30 минут в муфельной печи (нагрев до 200°С проводят со скоростью 100°С/ч, после 200°С нагрев ведут со скоростью не более 50°С/ч).

Перед проведением эксперимента проводят активацию катализатора.

Целью активации является достижение минимального размера дисперсного металла или его соединения, а также торможение увеличения размера активного зерна для препятствования растрескивания и преждевременной потери активности катализатора.

Активацию проводят следующим образом.

При загрузке в реактор катализатор является прокаленным, поэтому до 500°С допускается нагрев со скоростью до 250°С/ч в токе воздуха со скоростью потока не менее 10 м/мин. При температуре 500-550°С воздух переключают на азот (содержание кислорода не более 0,5% об.) и догревают катализатор до температуры 550-570°С со скоростью не более 100°С/ч с последующим выдерживанием не менее 10 минут.

После выдерживания катализатора в нейтральной атмосфере постепенно азот начинают заменять исходным углеводородным сырьем без добавления кислорода с нагревом до температуры ниже рабочей на 10-20°С. После нагрева и выдержки в течение 20-50 минут в течение 10-30 минут медленно доводят добавку кислорода (или воздуха) до необходимого количества при постоянном контроле температуры. Количество используемого кислорода составляет 10-250 л на 100 л углеводородного сырья в газообразном состоянии. При резком повышении температуры свыше 20°С подачу кислорода прекращают и возобновляют при снижении температуры катализатора дополнительно на 10-20°С. После полной подачи кислорода температуру повышают до рабочей и после 10 минут начинают эксперимент.

Процесс ароматизации проводят при температуре 550-625°С, давлении 5,0-15,0 атм, объемной скорости подачи сырья 500-2000 ч-1.

В качестве исходного сырья в процессе окислительной ароматизации используют низшие алканы.

Термин «низшие алканы» в рамках данного изобретения означает индивидуальные углеводороды, такие как этан, пропан, бутан, углеводородные газы С24, пропан-бутановые фракции, легкие низкооктановые углеводородные фракции, в частности широкая фракция легких углеводородов (ШФЛУ), газы термического и каталитического крекинга, природный газ, газы дегазации газовых конденсатов и прямогонных бензинов, другие углеводородные фракции и смеси указанных углеводородов.

После процесса ароматизации проводят регенерацию - рациональный выжиг коксовых отложений, образовавшихся в процессе работы катализатора, без опасности перегрева и изменения как активности, так и селективности каталитической системы.

После эксперимента катализатор охлаждают в реакторе в нейтральной среде или при подаче сырья до температуры не более 200°С для предотвращения «вспыхивания» катализатора при подаче окислительной среды.

После охлаждения до температуры 180-220°С проводят продувку реактора азотом в течение не менее 20 минут. После окончания продувки медленно повышают количество окислителя - кислорода путем замены азота на воздух. При самопроизвольном повышении температуры более чем на 10°С, подачу воздуха прекращают и возобновляют не менее чем через 5 минут.

После перехода на подачу воздуха катализатор выдерживают при температуре 180-250°С не менее 30 минут и затем со скоростью не более 100°С/ч повышают температуру до 550-600°С. Повышать температуру более чем 600°С запрещено ввиду уменьшения дисперсности активных металлов. Регенерацию проводят не менее чем 2 часа.

После регенерации допускается ароматизация сырья без охлаждения установки после 20-40-минутной продувки азотом.

Ниже представлен пример, иллюстрирующий изобретение, но не ограничивающее его.

Пример.

Получают катализатор окислительной ароматизации следующего состава, % масс: оксид цинка (в пересчете на металл) 5,00; оксид галлия (в пересчете на металл) 1,00; оксид германия (в пересчете на металл) 0,05; γ-оксид алюминия 20,00, цеолит ЦВН (30) - остальное, до 100.

Для приготовления 5 кг катализатора используют следующие компоненты:

- нитрат цинка 4-водный (803 г) или нитрат цинка 6-водный (913 г);

- нитрат галлия водный (157 г) или нитрат галлия 8-водный (229 г);

- оксид германия (2,9 г);

- γ-окись алюминия (1,0 кг);

- КМЦ для получения необходимой для прессования или экструдирования консистенции, технический 10 г;

- цеолит ЦВН (30) в водородной форме - остальное, до 5 кг.

Катализатор получают следующим образом.

В стеклянную широкогорлую колбу объемом 2 л заливают 500 мл 0,05 н. раствора соляной кислоты и поочередно аккуратно переносят оксид германия, нитрат галлия и нитрат цинка. Смесь перемешивают стеклянной палочкой или вращением колбы до полного растворения. Затем засыпают цеолит. В случае, если раствор не полностью покрывает цеолит, доливают необходимое количество 0,05 н. раствора соляной кислоты. После перемешивания в течение 10 минут колбу ставят на плитку с температурой не более 95°С. При постоянном помешивании палочкой или специализированной электропроводной мешалкой содержимое колбы упаривают досуха. В случае появления «разводов» на стенках колбы проводят дополнительное приливание количества 0,05 н. раствора соляной кислоты и последующее ее выпаривание.

После выпаривания колбу ставят в сушильную печь, где нагревают до 260°С (температура разложения нитратов) со скоростью не более 100°С/ч и выдерживают при конечной температуре 30 мин.

После прокалки подготовленного цеолита колбу охлаждают на воздухе. После охлаждения в колбу с цеолитом помещают оксид алюминия и раствор КМЦ. После тщательного перемешивания в колбу приливают химически очищенную воду до состояния, пригодного для экструзии.

Подготовленную массу помещают в экструдер для получения экструдатов диаметром 2,0±0,2 мм. После экструдирования массу делят на экструдаты длиной 8±2 мм.

Окончательную прокалку массы осуществляют при температуре 530°С в течение 30 минут в муфельной печи (нагрев до 200°С проводят со скоростью 100°С/ч, после 200°С нагрев ведут со скоростью не более 50°С/ч).

В качестве сырья процесса ароматизации используют пропан-бутановую фракцию ((ПБФ) производства ОАО «Московский газоперерабатывающий завод). Состав пропан-бутановой фракции, % об.: метан 4,5; этан 11,5; пропан 59,4; i-бутан 8,4; н-бутан 15,7; С5+ 0,5.

Процесс ароматизации проводят по вышеописанной схеме при температуре 575°С, давлении 8 атм, объемной скорости подачи сырья 1250 ч-1, добавлении кислорода в количестве 0,6 литра кислорода на литр пропан-бутановой фракции.

При этом получены следующие результаты: конверсия 97,5% масс., селективность 83,5% масс., выход ароматических углеводородов (АрУ) 81,4% масс., выход СН4 - 7,9% масс. Состав полученных газов, % об.: Н2 - 19,3; СН4 - 69,8; С2Н6 - 9,3; С2Н4 - 0,5; CO2 - 0,4; ∑С4 - отс.; CO2 - 0,7; O2 - отс. Состав катализата, % мас.: С6Н6 - 40,4; С7Н8 - 34,8; ∑C8H10 - 13,4; ∑С9Н12 - 1,0; C10H8 - 6,3; C11+ - 4,l.

Для возможности интенсификации процесса проводят эксперимент с рециклом непревращенного сырья. При этом получают следующие результаты: конверсия 97,3% масс., селективность 83,5% масс., выход АрУ - 81,2% масс., выход СН4 8,1% масс. Состав полученных газов, % об.: Н2 - 18,2; СН4 - 70,5; С2Н6 - 9,5; С2Н4 - 0,6; С3Н8 - 0,4; ∑С4 - отс.; CO2 - 0,8; O2 - отс. Состав катализата, % мас.: С6Н6 - 39,9; С7Н8 - 35,1; ∑С8Н10 - 13,4; ∑C9H12 - 1,0; C10H8 - 6,4; С11+ - 4,2.

Катализатор, имеющий состав, определяемый вышеоговоренными интервальными значениями концентраций компонентов, в иных, отличных от описанных в примере величинах, но входящих в указанные интервалы, проявляет аналогичные свойства. Использование запредельных интервальных значений концентраций компонентов в катализаторе не приводит к желаемым результатам.

Для уточнения времени межрегенерационного пробега катализатора проводят его длительные испытания. Из полученных данных следует, что срок работы катализатора превышает 25 суток.

Таким образом, описываемый катализатор имеет повышенную активность, так как позволяет повысить выход ароматических углеводородов более чем в 3,5 раза, конверсию более чем в 1,2 раза, обладает высокой селективностью (выше 83%). При этом катализатор характеризуется значительно увеличенным временем межрегенерационного пробега (время работы известного катализатора, за которое наблюдается 50% снижения выхода ароматических углеводородов составляет 28-32 часов, цикл работы описываемого катализатора превышает 25 суток).

Таким образом, описываемый катализатор позволяет повысить выход ароматических углеводородов более чем в два раза, значительно увеличить время межрегенерационного пробега (время работы известного катализатора, за которое наблюдается 50% снижения выхода ароматических углеводородов составляет 28-32 часов, цикл работы описываемого катализатора превышает 25 суток).

Катализатор окислительной ароматизации низших алканов, содержащий оксид цинка, оксид галлия, оксид германия, γ-оксид алюминия и высококремнеземный цеолит типа пентасила в водородной форме при следующем соотношении компонентов, мас.%:
Источник поступления информации: Роспатент

Показаны записи 51-60 из 101.
09.06.2018
№218.016.5c6a

Аппаратура для контроля защитного изоляционного покрытия технологических и магистральных трубопроводов

Использование: для обнаружения дефектов изоляционного покрытия технологических или магистральных трубопроводов или иных изделий, расположенных в труднодоступных местах. Сущность изобретения заключается в том, что аппаратура для контроля защитного изоляционного покрытия технологических или...
Тип: Изобретение
Номер охранного документа: 0002655991
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c70

Аппаратура для обнаружения дефектов трубопроводов

Использование: для неразрушающего контроля технического состояния трубопроводов акустическим способом. Сущность изобретения заключается в том, что аппаратура для обнаружения дефектов трубопроводов содержит кольцевую приемо-передающую акустическую систему, выполненную в виде антенных решеток...
Тип: Изобретение
Номер охранного документа: 0002655982
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c72

Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления

Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль...
Тип: Изобретение
Номер охранного документа: 0002655983
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6bf5

Способ производства сжиженного природного газа

Изобретение относится к газоперерабатывающей отрасли промышленности. Посредством фильтра проводят очистку природного газа от механических примесей и капельной жидкости. Затем в мембранном блоке проводят предварительную осушку газа. Пермеат направляют в трубопровод низкого давления. Газ после...
Тип: Изобретение
Номер охранного документа: 0002659870
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6d27

Способ исследования геометрических параметров каверны подземного хранилища газа

Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего...
Тип: Изобретение
Номер охранного документа: 0002660307
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e13

Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, и звуколокатор для реализации способа

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей. Центральная часть выполнена с...
Тип: Изобретение
Номер охранного документа: 0002660400
Дата охранного документа: 06.07.2018
09.08.2018
№218.016.79ef

Битумно-полимерная грунтовка

Изобретение относится к составам битумно-полимерных грунтовок для защиты от коррозии стальных трубопроводов, металлических резервуаров и нефтехранилищ промышленно-гражданского строительства. Битумно-полимерная грунтовка содержит мастику битумно-полимерную, фенолформальдегидную смолу,...
Тип: Изобретение
Номер охранного документа: 0002663134
Дата охранного документа: 01.08.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a52f

Буферная жидкость

Изобретение относится к области крепления скважин, а именно к буферным жидкостям для очистки скважин. Технический результат - получение стабильной утяжеленной буферной жидкости на углеводородной основе, обладающей высокой моющей способностью и пониженным показателем фильтрации, позволяющей...
Тип: Изобретение
Номер охранного документа: 0002674348
Дата охранного документа: 07.12.2018
Показаны записи 41-47 из 47.
17.02.2018
№218.016.2ada

Облегченная тампонажная смесь

Изобретение относится к нефтегазовой промышленности, в частности к тампонажным смесям, и может быть использовано при одноступенчатом цементировании протяженных (более 2500 м) обсадных колонн, перекрывающих интервалы проницаемых пластов и пластов с низкими градиентами гидроразрыва при...
Тип: Изобретение
Номер охранного документа: 0002642897
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3152

Способ создания малопроницаемого криволинейного экрана в пористой среде при подземном хранении газа

Изобретение относится к способу создания малопроницаемого экрана в пористой среде при подземном хранении газа в пористых пластах-коллекторах и может быть использовано в нефтегазодобывающей промышленности. Технический результат - повышение надежности экрана за счет закачки раствора и газа,...
Тип: Изобретение
Номер охранного документа: 0002645053
Дата охранного документа: 15.02.2018
05.07.2018
№218.016.6bf5

Способ производства сжиженного природного газа

Изобретение относится к газоперерабатывающей отрасли промышленности. Посредством фильтра проводят очистку природного газа от механических примесей и капельной жидкости. Затем в мембранном блоке проводят предварительную осушку газа. Пермеат направляют в трубопровод низкого давления. Газ после...
Тип: Изобретение
Номер охранного документа: 0002659870
Дата охранного документа: 04.07.2018
29.03.2019
№219.016.f413

Регулятор оборотов ветроколеса ветродвигателя

Изобретение относится к ветроэнергетике, к устройствам регулирования частоты вращения ветроколеса посредством изменения угла поворота лопастей относительно их оси вращения. Регулятор оборотов ветроколеса содержит закрепленные на валу ветроколеса лопасти, соединенные с качалками, которые через...
Тип: Изобретение
Номер охранного документа: 0002323369
Дата охранного документа: 27.04.2008
10.07.2019
№219.017.ae01

Ветроколесо (варианты)

Изобретение относится к ветроэнергетике, к устройствам аэродинамического типа регулирования частоты вращения и крутящего момента ветроколеса. По первому варианту в устройстве, влияющем на поворот лопасти, состоящем из направляющей, установленного на ней блока пружин, состоящего как минимум из...
Тип: Изобретение
Номер охранного документа: 0002335657
Дата охранного документа: 10.10.2008
21.05.2023
№223.018.6a2d

Способ реконструкции трахеостомы с одномоментной пластикой трахеопищеводного свища и формированием анатомо-физиологических условий для пищеводного голоса

Изобретение относится к медицине, а именно к оториноларингологии. Производят разрез слизистой оболочки задней стенки трахеи в форме перевернутой капли, окаймляющий трахеопищеводный свищ. Слизистую оболочку трахеи вокруг свищевого отверстия ушивают. После этого производят кожный разрез, имеющий...
Тип: Изобретение
Номер охранного документа: 0002795088
Дата охранного документа: 28.04.2023
21.05.2023
№223.018.6b19

Система и способ сбора и обработки новостей в сети интернет

Настоящее техническое решение относится к области вычислительной техники. Технический результат заключается в повышении точности сбора и обработки текстовой информации с веб-страницы. Технический результат достигается за счёт модуля анализатора для поиска доменных имен в сети Интернет,...
Тип: Изобретение
Номер охранного документа: 0002795678
Дата охранного документа: 05.05.2023
+ добавить свой РИД