×
13.01.2017
217.015.86da

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра. В способе калибровки датчика, содержащего термочувствительный элемент, основанном на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве обеспечивают контролируемый нагрев посредством пропускания импульса электрического тока через ТЧЭ. При этом определяют начальной величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Далее подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ. Устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ. Результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии. Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра). 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра.

Для определения интегральной энергии источника излучения по изменению сопротивления термочувствительного элемента болометра обычно используют известные соотношения [Ю.Л. Бакшаев, С.А. Данько, Е.Е. Соколов и др. // Вопросы атомной науки и техники. Сер. Термоядерный синтез, 2011, вып. 1, с. 54-62 - аналог]. Однако расчет по этим формулам не всегда является корректным по нескольким причинам. Во-первых, во многих конструкциях болометров присутствует отток тепла от термочувствительного элемента в диэлектрическую подложку, что занижает реальный нагрев ТЧЭ. Во-вторых, не учитываются контактные сопротивления при подключении ТЧЭ к источнику питания, что увеличивает включаемое в измерения сопротивление болометра. В-третьих, физические свойства применяемых ТЧЭ не всегда соответствуют своим табличным величинам (особенно ТЧЭ, полученные методом гальванического осаждения металла, напыления и т.д.). Эти обстоятельства делают необходимым проведение калибровки датчика, содержащего ТЧЭ.

Известен способ калибровки ТЧЭ болометра [R.В. Spielman, С. Deeney, D.L. Fehl et al. // Rev. Sci. Instrum., 1999, v. 70, p. 651-655 - прототип], в котором калибровка термочувствительного элемента выполняется посредством измерения сопротивления ТЧЭ при его контролируемом нагреве в вакуумной печи посредством термометра. По результатам измерений строится зависимость сопротивления ТЧЭ от температуры нагрева. К недостаткам данного вида калибровки можно отнести то, что вложенная в ТЧЭ энергия рассчитывается с использованием табличных величин, которые могут отличаться от реальных значений для конкретных ТЧЭ. Кроме того, существуют погрешности при измерении температуры ТЧЭ из-за тепловых процессов, сопровождающих нагрев ТЧЭ. Суммарная погрешность измерений оценивается авторами на уровне 10%.

Задача состоит в следующем. В экспериментах по генерации импульсов мягкого рентгеновского излучения (МРИ) на мощных Z-пинч установках применяются различные наборы детекторов (вакуумные и полупроводниковые диоды и т.д.). Важным дополнением к этим датчикам служат датчики, содержащие ТЧЭ, например болометры, позволяющие не только измерить полную по спектру мощность импульса МРИ, но и провести калибровку других детекторов (например, вакуумных диодов). Для уменьшения ошибки измерения болометром требуется его предварительная калибровка. В связи с этим возникла необходимость в разработке способа калибровки, применение которого дает возможность построить калибровочную характеристику болометра.

Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра).

Данный технический результат достигается тем, что в отличие от известного способа калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанного на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, в заявляемом устройстве обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.

В прототипе при калибровке регистрируется зависимость сопротивления ТЧЭ от температуры при его нагреве, что позволяет в экспериментах лишь оценить сопротивление ТЧЭ при изменении его температуры. Данный результат является промежуточным для расчета энергии, поглощенной ТЧЭ, и недостаточным для восстановления энергии источника излучения (измерение является косвенным). Основным преимуществом заявляемого способа калибровки является возможность получения прямой зависимости изменения сопротивления ТЧЭ от поглощенной им энергии, что и является калибровочной характеристикой датчика, содержащего ТЧЭ (болометра). Энергия, поглощенная ТЧЭ при калибровке, определяется достаточно точно как интеграл произведения величин импульсов тока и напряжения на ТЧЭ. Такой способ калибровки учитывает реальные величины физических свойств ТЧЭ, контактные сопротивления в цепи питания ТЧЭ и повышает точность процедуры восстановления энергии МРИ из полученных осциллограмм во взрывных и лабораторных экспериментах.

На фиг. 1 изображена схема устройства, с помощью которого реализован способ калибровки термочувствительных элементов болометра.

На фиг. 2 представлен внешний вид устройства калибровки.

На фиг. 3 показана калибровочная характеристика ТЧЭ (зависимость изменения сопротивления ТЧЭ от поглощенной им энергии).

Практически реализован (на этапе, предшествующем эксперименту с плазменным пинчем) способ с помощью устройства для калибровки болометра, схема и внешний вид которого представлены на фигурах 1 и 2 соответственно. На элементах VT1, R1, VD1 (фиг. 1) собран источник тока 1, D1 - стабилизатор питания, DA1 - оптоэлектронная схема управления, на вход которой подается оптический импульс от блока управления и синхронизации, VT2, R2, R3 - электронный ключ 2, С1 - накопительный конденсатор, R4 - калибровочный резистор, предназначенный для контроля параметров тока калибровки, R5 - калибруемый ТЧЭ болометра. К контрольным точкам A, B, C, D подключается измерительная аппаратура контроля параметров калибровки (тока и напряжения на ТЧЭ). Энергия калибровочного импульса регулируется изменением напряжения питания и длительности импульса тока. Амплитуда тока в ТЧЭ при этом может достигать до 60 А, а вкладываемая в ТЧЭ энергия - до 85 мДж. Конструктивно устройство собрано в металлическом корпусе (фиг. 2), на передней панели которого расположены оптический разъем 3 для коммутации с блоком управления и синхронизации запуском устройства и разъем 4 контроля тока, протекающего через ТЧЭ калибруемого болометра.

Перед проведением калибровки определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Формирование импульса тока с заданной длительностью и амплитудой определяется величиной напряжения питания источника тока 1 и длительностью оптического импульса запуска устройства, подаваемого от внешнего блока управления и синхронизации на вход оптоэлектронной схемы DA1. Этот импульс тока подается на ТЧЭ, поглощается им, что приводит к нагреву и изменению его сопротивления. Изменение сопротивления определяется из отношения изменения напряжения на ТЧЭ (регистрируют на осциллографе с точек С, D) к протекающему через него току (значения тока регистрируют с резистора R4 точек А, В). Из полученных осциллограмм импульсов тока и напряжения на ТЧЭ методами дальнейшей математической обработки (интегрированием произведения зарегистрированных напряжения и тока на ТЧЭ) получаются зависимости сопротивления ТЧЭ, поглощенной им энергии в калибровочном импульсе, температуры ТЧЭ от времени длительности импульса. Результатом калибровки является построение калибровочной зависимости (фиг. 3) изменения сопротивления ТЧЭ от поглощенной им энергии. Эта зависимость по результатам взрывных и лабораторных экспериментах по измерению энергии мощных импульсов МРИ позволяет с достаточной точностью определить поглощенную ТЧЭ болометра энергию, что в дальнейшем значительно повышает точность (до 10%) восстановления энергии, излучаемой плазменным пинчем в эксперименте.

Способ калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанный на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, отличающийся тем, что обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 691-700 из 799.
17.06.2020
№220.018.2744

Радиоэлектронный блок

Изобретение относится к области радиоэлектроники. Техническими результатами, на достижение которых направлено изобретение, являются расширение функциональных возможностей, повышение надежности и уменьшение габаритов. Расширение функциональных возможностей достигается за счет возможности...
Тип: Изобретение
Номер охранного документа: 0002723442
Дата охранного документа: 11.06.2020
17.06.2020
№220.018.275c

Система мониторинга волоконно-оптических линий связи

Изобретение относится к технике связи. Технический результат – расширение функциональных возможностей и повышение достоверности информации о занятости портов коммутационных панелей волоконно-оптических линий связи. Для этого система мониторинга волоконно-оптических линий связи содержит по...
Тип: Изобретение
Номер охранного документа: 0002723467
Дата охранного документа: 11.06.2020
21.06.2020
№220.018.28de

Оптический логический элемент (варианты)

Изобретение относится к цифровым устройствам и может быть использовано, в частности, при производстве универсальных цифровых фотонных вычислительных машин и цифровых фотонных устройств управления. Работа оптического логического элемента, содержащего оптический волновод с входами и выходом,...
Тип: Изобретение
Номер охранного документа: 0002723906
Дата охранного документа: 18.06.2020
21.06.2020
№220.018.291f

Волноводный излучатель

Изобретение относится к области радиотехники, а именно к области волноводных антенн, и может быть использовано в качестве самостоятельной широкополосной антенны либо в качестве широкополосного облучателя зеркальной антенны. Волноводный излучатель содержит круглый волновод, на открытом конце...
Тип: Изобретение
Номер охранного документа: 0002723904
Дата охранного документа: 18.06.2020
29.06.2020
№220.018.2c5b

Схема возбуждения частотного датчика

Изобретение относится к области приборов измерения физических величин на основе частотных датчиков в приборах автоматики. Технический результат заключается в исключении возможности возбуждения автогенератора на частотах, отличающихся от частоты основного резонанса, а также стабилизации...
Тип: Изобретение
Номер охранного документа: 0002724795
Дата охранного документа: 25.06.2020
29.06.2020
№220.018.2cc8

Устройство определения параметров взрывчатого превращения вв при термических воздействиях

Изобретение относится к области измерительной техники и может быть использовано для регистрации режима взрывчатого превращения взрывчатых веществ (ВВ) (наличия или отсутствия детонационного режима взрывчатого превращения ВВ) и определения давления на фронте детонационной волны при взрыве...
Тип: Изобретение
Номер охранного документа: 0002724884
Дата охранного документа: 26.06.2020
03.07.2020
№220.018.2db4

Поглотитель водорода

Изобретение относится к технологии очистки газовых смесей от водорода или его изотопов в статическом режиме из кислородсодержащих газовых смесей, в которых необходимо уменьшить или исключить накопление оксида углерода (II), паров воды и органических веществ в замкнутых объемах, и может быть...
Тип: Изобретение
Номер охранного документа: 0002725252
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2dee

Контактная пара электрического соединителя

Изобретение относится к электротехнике, в частности к электрическим соединителям, а также может быть использовано в других электроразъемных устройствах. Контактная пара электрического соединителя предназначена для соединения электрических цепей и, как правило, состоит из двух частей - штыря и...
Тип: Изобретение
Номер охранного документа: 0002725143
Дата охранного документа: 30.06.2020
03.07.2020
№220.018.2e22

Датчик линейного ускорения

Изобретение относится к области электротехники. Технический результат – повышение точности преобразования линейного ускорения, снижение погрешности при преобразовании измеряемого физического параметра в частоту сигнала с использованием резонансного частотного датчика линейного ускорения и...
Тип: Изобретение
Номер охранного документа: 0002725261
Дата охранного документа: 30.06.2020
04.07.2020
№220.018.2e5d

Способ и судовая система для транспортировки сжатого природного газа

Изобретение относится к области судостроения, в частности к транспортировке судном сжатого природного газа, добываемого в труднодоступных районах, от небольших месторождений на сравнительно короткие расстояния (до 1000 км). Предложен способ транспортировки сжатого природного газа, который...
Тип: Изобретение
Номер охранного документа: 0002725572
Дата охранного документа: 02.07.2020
Показаны записи 281-290 из 290.
17.02.2018
№218.016.2e14

Система корректировки траекторий потока заряженных частиц

Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела. Система корректировки траекторий потока заряженных частиц содержит...
Тип: Изобретение
Номер охранного документа: 0002643507
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4513

Способ генерации и вывода электронного пучка в область высокого давления газа, до атмосферного

Изобретение относится к области создания сфокусированных электронных пучков и вывода их в область повышенного давления, до атмосферного. Плазменный катод создается низковольтным отражательным разрядом с полым катодом, электрическим полем ускоряют вышедшие из плазменного катода электроны....
Тип: Изобретение
Номер охранного документа: 0002650101
Дата охранного документа: 09.04.2018
14.03.2019
№219.016.dfa7

Способ регистрации распределения интенсивности мягкого рентгеновского излучения

Изобретение относится к области регистрации ионизирующего излучения и касается способа регистрации распределения интенсивности мягкого рентгеновского излучения при наличии в спектре паразитного видимого и инфракрасного излучения. Способ заключается в том, что излучение пропускают через...
Тип: Изобретение
Номер охранного документа: 0002681659
Дата охранного документа: 12.03.2019
19.07.2019
№219.017.b63a

Устройство для формирования мегаамперного импульса тока в лайнерной нагрузке

Изобретение относится к средству формирования мегаамперных импульсов тока с целью создания мощных источников мягкого рентгеновского излучения (МРИ). Устройство содержит соосно расположенные в вакууме центральный электрод, первое и второе электродные кольца, прямой и обратный токопроводы, а...
Тип: Изобретение
Номер охранного документа: 0002694819
Дата охранного документа: 17.07.2019
04.05.2020
№220.018.1ac0

Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения

Изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах. Технический результат - повышение надежности работы вакуумного рентгеновского диода и технологичности обслуживания...
Тип: Изобретение
Номер охранного документа: 0002720214
Дата охранного документа: 28.04.2020
+ добавить свой РИД