×
13.01.2017
217.015.86da

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра. В способе калибровки датчика, содержащего термочувствительный элемент, основанном на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве обеспечивают контролируемый нагрев посредством пропускания импульса электрического тока через ТЧЭ. При этом определяют начальной величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Далее подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ. Устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ. Результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии. Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра). 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра.

Для определения интегральной энергии источника излучения по изменению сопротивления термочувствительного элемента болометра обычно используют известные соотношения [Ю.Л. Бакшаев, С.А. Данько, Е.Е. Соколов и др. // Вопросы атомной науки и техники. Сер. Термоядерный синтез, 2011, вып. 1, с. 54-62 - аналог]. Однако расчет по этим формулам не всегда является корректным по нескольким причинам. Во-первых, во многих конструкциях болометров присутствует отток тепла от термочувствительного элемента в диэлектрическую подложку, что занижает реальный нагрев ТЧЭ. Во-вторых, не учитываются контактные сопротивления при подключении ТЧЭ к источнику питания, что увеличивает включаемое в измерения сопротивление болометра. В-третьих, физические свойства применяемых ТЧЭ не всегда соответствуют своим табличным величинам (особенно ТЧЭ, полученные методом гальванического осаждения металла, напыления и т.д.). Эти обстоятельства делают необходимым проведение калибровки датчика, содержащего ТЧЭ.

Известен способ калибровки ТЧЭ болометра [R.В. Spielman, С. Deeney, D.L. Fehl et al. // Rev. Sci. Instrum., 1999, v. 70, p. 651-655 - прототип], в котором калибровка термочувствительного элемента выполняется посредством измерения сопротивления ТЧЭ при его контролируемом нагреве в вакуумной печи посредством термометра. По результатам измерений строится зависимость сопротивления ТЧЭ от температуры нагрева. К недостаткам данного вида калибровки можно отнести то, что вложенная в ТЧЭ энергия рассчитывается с использованием табличных величин, которые могут отличаться от реальных значений для конкретных ТЧЭ. Кроме того, существуют погрешности при измерении температуры ТЧЭ из-за тепловых процессов, сопровождающих нагрев ТЧЭ. Суммарная погрешность измерений оценивается авторами на уровне 10%.

Задача состоит в следующем. В экспериментах по генерации импульсов мягкого рентгеновского излучения (МРИ) на мощных Z-пинч установках применяются различные наборы детекторов (вакуумные и полупроводниковые диоды и т.д.). Важным дополнением к этим датчикам служат датчики, содержащие ТЧЭ, например болометры, позволяющие не только измерить полную по спектру мощность импульса МРИ, но и провести калибровку других детекторов (например, вакуумных диодов). Для уменьшения ошибки измерения болометром требуется его предварительная калибровка. В связи с этим возникла необходимость в разработке способа калибровки, применение которого дает возможность построить калибровочную характеристику болометра.

Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра).

Данный технический результат достигается тем, что в отличие от известного способа калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанного на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, в заявляемом устройстве обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.

В прототипе при калибровке регистрируется зависимость сопротивления ТЧЭ от температуры при его нагреве, что позволяет в экспериментах лишь оценить сопротивление ТЧЭ при изменении его температуры. Данный результат является промежуточным для расчета энергии, поглощенной ТЧЭ, и недостаточным для восстановления энергии источника излучения (измерение является косвенным). Основным преимуществом заявляемого способа калибровки является возможность получения прямой зависимости изменения сопротивления ТЧЭ от поглощенной им энергии, что и является калибровочной характеристикой датчика, содержащего ТЧЭ (болометра). Энергия, поглощенная ТЧЭ при калибровке, определяется достаточно точно как интеграл произведения величин импульсов тока и напряжения на ТЧЭ. Такой способ калибровки учитывает реальные величины физических свойств ТЧЭ, контактные сопротивления в цепи питания ТЧЭ и повышает точность процедуры восстановления энергии МРИ из полученных осциллограмм во взрывных и лабораторных экспериментах.

На фиг. 1 изображена схема устройства, с помощью которого реализован способ калибровки термочувствительных элементов болометра.

На фиг. 2 представлен внешний вид устройства калибровки.

На фиг. 3 показана калибровочная характеристика ТЧЭ (зависимость изменения сопротивления ТЧЭ от поглощенной им энергии).

Практически реализован (на этапе, предшествующем эксперименту с плазменным пинчем) способ с помощью устройства для калибровки болометра, схема и внешний вид которого представлены на фигурах 1 и 2 соответственно. На элементах VT1, R1, VD1 (фиг. 1) собран источник тока 1, D1 - стабилизатор питания, DA1 - оптоэлектронная схема управления, на вход которой подается оптический импульс от блока управления и синхронизации, VT2, R2, R3 - электронный ключ 2, С1 - накопительный конденсатор, R4 - калибровочный резистор, предназначенный для контроля параметров тока калибровки, R5 - калибруемый ТЧЭ болометра. К контрольным точкам A, B, C, D подключается измерительная аппаратура контроля параметров калибровки (тока и напряжения на ТЧЭ). Энергия калибровочного импульса регулируется изменением напряжения питания и длительности импульса тока. Амплитуда тока в ТЧЭ при этом может достигать до 60 А, а вкладываемая в ТЧЭ энергия - до 85 мДж. Конструктивно устройство собрано в металлическом корпусе (фиг. 2), на передней панели которого расположены оптический разъем 3 для коммутации с блоком управления и синхронизации запуском устройства и разъем 4 контроля тока, протекающего через ТЧЭ калибруемого болометра.

Перед проведением калибровки определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Формирование импульса тока с заданной длительностью и амплитудой определяется величиной напряжения питания источника тока 1 и длительностью оптического импульса запуска устройства, подаваемого от внешнего блока управления и синхронизации на вход оптоэлектронной схемы DA1. Этот импульс тока подается на ТЧЭ, поглощается им, что приводит к нагреву и изменению его сопротивления. Изменение сопротивления определяется из отношения изменения напряжения на ТЧЭ (регистрируют на осциллографе с точек С, D) к протекающему через него току (значения тока регистрируют с резистора R4 точек А, В). Из полученных осциллограмм импульсов тока и напряжения на ТЧЭ методами дальнейшей математической обработки (интегрированием произведения зарегистрированных напряжения и тока на ТЧЭ) получаются зависимости сопротивления ТЧЭ, поглощенной им энергии в калибровочном импульсе, температуры ТЧЭ от времени длительности импульса. Результатом калибровки является построение калибровочной зависимости (фиг. 3) изменения сопротивления ТЧЭ от поглощенной им энергии. Эта зависимость по результатам взрывных и лабораторных экспериментах по измерению энергии мощных импульсов МРИ позволяет с достаточной точностью определить поглощенную ТЧЭ болометра энергию, что в дальнейшем значительно повышает точность (до 10%) восстановления энергии, излучаемой плазменным пинчем в эксперименте.

Способ калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанный на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, отличающийся тем, что обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 799.
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9df3

Устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах

Использование: устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах. Сущность изобретения заключается в том, что устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах содержит, по крайней мере,...
Тип: Изобретение
Номер охранного документа: 0002572065
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.cc25

Способ определения угловой скорости вращения объекта, стабилизированного вращением

Изобретение относится к измерительной технике, а именно к способу определения угловой скорости вращения объекта, стабилизированного вращением. Способ определения угловой скорости вращения объекта, стабилизированного вращением (ОСВ, заключается в том, что наблюдают изменение во времени...
Тип: Изобретение
Номер охранного документа: 0002577175
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc5c

Многоканальный рельсовый разрядник

Изобретение относится к высоковольтной сильноточной импульсной технике, а именно к сильноточным коммутирующим газонаполненным рельсовым разрядникам. Многоканальный рельсовый разрядник содержит герметичный диэлектрический корпус (1), выполненный в виде единой в поперечном сечении конструкции, с...
Тип: Изобретение
Номер охранного документа: 0002577532
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce9f

Устройство крепления концентричных кольцевых тепловыделяющих элементов в тепловыделяющей сборке

Изобретение относится к области атомной энергетики, в частности к тепловыделяющей сборке (ТВС) с концентричными кольцевыми тепловыделяющими элементами (твэлами). В известном устройстве крепления концентричных кольцевых твэлов в ТВС, содержащем кольцевые твэлы и дистанционирующий элемент между...
Тип: Изобретение
Номер охранного документа: 0002575866
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8a8

Оптическая усилительная головка с контротражателем диодной накачки

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы...
Тип: Изобретение
Номер охранного документа: 0002575673
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b80

Квантрон твердотельного лазера с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002579188
Дата охранного документа: 10.04.2016
Показаны записи 61-70 из 290.
20.12.2015
№216.013.9c06

Способ управления движением аэробаллистического летательного аппарата по заданной пространственной траектории

Изобретение относится к области приборостроения, а именно к области автоматического регулирования, и может быть использовано в системах высокоточного управления движением центра масс подвижных объектов, в частности аэробаллистических летательных аппаратов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002571567
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9df3

Устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах

Использование: устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах. Сущность изобретения заключается в том, что устройство для измерения энергии мягкого рентгеновского излучения в нескольких спектральных диапазонах содержит, по крайней мере,...
Тип: Изобретение
Номер охранного документа: 0002572065
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f5e

Способ сварки деталей различного диаметра и разной толщины

Изобретение относится к способу сварки деталей различного диаметра и разной толщины и может быть использовано в приборостроении, в электронной и радиотехнической промышленности. Для сварки используют переходник 3, на одном конце которого формируют технологический бурт 4. На другом конце...
Тип: Изобретение
Номер охранного документа: 0002572435
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3f1

Ударный пневмоцилиндр

Изобретение относится к пневматическим устройствам ударного действия. Ударный пневмоцилиндр, содержащий корпус, разделенный на три полости и расположенный вне корпуса спусковой механизм со штоком. Средняя из упомянутых полостей посредством канала малого поперечного сечения соединена с...
Тип: Изобретение
Номер охранного документа: 0002574630
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c9aa

Канал технологический совмещенный для промышленной ядерной установки

Изобретение относится к атомной энергетике и касается конструкции канала технологического совмещенного (КТС), содержащего тепловыделяющие и поглощающие элементы. Канал ядерного реактора содержит трубу, тепловыделяющие элементы и блоки-поглотители нейтронов. Канал снабжен второй трубой,...
Тип: Изобретение
Номер охранного документа: 0002577783
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.cc25

Способ определения угловой скорости вращения объекта, стабилизированного вращением

Изобретение относится к измерительной технике, а именно к способу определения угловой скорости вращения объекта, стабилизированного вращением. Способ определения угловой скорости вращения объекта, стабилизированного вращением (ОСВ, заключается в том, что наблюдают изменение во времени...
Тип: Изобретение
Номер охранного документа: 0002577175
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc5c

Многоканальный рельсовый разрядник

Изобретение относится к высоковольтной сильноточной импульсной технике, а именно к сильноточным коммутирующим газонаполненным рельсовым разрядникам. Многоканальный рельсовый разрядник содержит герметичный диэлектрический корпус (1), выполненный в виде единой в поперечном сечении конструкции, с...
Тип: Изобретение
Номер охранного документа: 0002577532
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.ce9f

Устройство крепления концентричных кольцевых тепловыделяющих элементов в тепловыделяющей сборке

Изобретение относится к области атомной энергетики, в частности к тепловыделяющей сборке (ТВС) с концентричными кольцевыми тепловыделяющими элементами (твэлами). В известном устройстве крепления концентричных кольцевых твэлов в ТВС, содержащем кольцевые твэлы и дистанционирующий элемент между...
Тип: Изобретение
Номер охранного документа: 0002575866
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.e8a8

Оптическая усилительная головка с контротражателем диодной накачки

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы...
Тип: Изобретение
Номер охранного документа: 0002575673
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2b80

Квантрон твердотельного лазера с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002579188
Дата охранного документа: 10.04.2016
+ добавить свой РИД