×
13.01.2017
217.015.86a4

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ БИОКОРРОЗИОННЫХ ПОРАЖЕНИЙ ТОНКОСТЕННЫХ ГЕРМЕТИЧНЫХ ОБОЛОЧЕК ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ ПРИ ЭКСПЛУАТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И ИМИТАЦИОННЫЙ СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002603797
Дата охранного документа
27.11.2016
Аннотация: Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов, в котором изготавливают испытательные и контрольные образцы из алюминиево-магниевых сплавов АМг6, подготовленные испытательные и контрольные образцы высушивают, испытательные образцы стерилизуют, готовят имитационный состав на основе органической кислоты, который наносят на простерилизованные испытательные образцы, и помещают, по крайней мере, по два образца в чашки Петри, закрывают их, контрольные образцы, обработанные дистиллированной водой, также располагают в чашках Петри, чашки Петри с испытательными и контрольными образцами помещают в разные эксикаторы, на дно которых наливают воду для поддержания влажности более 90%, эксикаторы закрывают и выдерживают при комнатной температуре, проводят экспозицию испытательных и контрольных образцов, затем образцы извлекают из чашек Петри, промывают их в проточной воде, где испытательные и контрольные образцы используют с механически обработанной поверхностью, а для приготовления имитационного состава используют дистиллированную воду и одну из органических кислот, выбранную из следующих карбоновых кислот: глюконовая или малоновая, полученный состав с помощью распылителя наносят на испытательные образцы алюминиево-магниевых сплавов АМг6, после промывания образцов в проточной воде их ополаскивают дистиллированной водой и высушивают, затем с помощью растрового электронного микроскопа оценивают начальные этапы биокоррозии и ее тип, исследуют химический состав пораженной поверхности образцов, при этом экспозицию испытательных и контрольных образцов проводят в течение 30-45 суток. Также описан имитационный состав для моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов. Технический результат: увеличенная надежность и ресурс эксплуатации конструкционных материалов в присутствии технофильных микроорганизмов в эксплуатационных условиях гермозамкнутого объема. 3 н.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике.

Космическая станция - зона повышенного риска с экстремальными условиями для работы оборудования. Постоянный контроль всех параметров внутренней среды, в том числе и микрофлоры станции, обеспечивает повышение надежности и безопасности ее работы.

Все материалы в процессе эксплуатации неизбежно подвергаются различным воздействиям окружающей среды, которые вызывают коррозионные процессы на их поверхности. Они могут быть вызваны как воздействием химических веществ (химическая коррозия), так и действием различных микроорганизмов (биологическая коррозия). Реальные коррозионные процессы, как правило, происходят под действием обоих факторов.

Действие микроорганизмов представляет собой один из факторов, способствующих возникновению и развитию процессов коррозии металлов (Албитская О.Н., Шапошникова Н.А. «Влияние плесеней на коррозию металлов» // Микробиология. 1960. Т. 29. С. 725-730; Коваль Э.З., Касьян Д.М., Дахановский В.И. «Исследования грибной коррозии» // Биологические повреждения строительных и промышленных материалов. Киев: Наукова думка. 1978. С. 59-60; Лугаускас А.Ю.; Микульскене А.И.; Шляужене Д.Ю. Каталог микромицетов-биодеструкторов полимерных материалов. Отв. ред. М.В. Горленко. М.: Наука, 1987. 340 с.).

В основе действия микроорганизмов на металлы лежит электрохимический механизм. Микроорганизмы могут вызывать или изменять коррозию тремя основными способами:

1. Непосредственно воздействуя на кинетику электродных реакций.

2. Образованием метаболитов, обладающих коррозионными свойствами (неорганические и органические кислоты и т.п.).

3. Изменениями на поверхности раздела металл-электролит, которые могут привести к коррозии (например, образование участков с повышенным образованием оксидов) (Costello J.A., 1969. The corrosion of metals by micro-organisms. Int. Biodent. Bull., 5,101).

Плесневые грибы развиваются на поверхностях, контактирующих с металлами (ткань, лакокрасочное покрытие, топливо и т.д.), откуда споры гриба распространяются и при конденсации влаги начинают развиваться, образуя органические кислоты.

Коррозии способствует конденсация паров воды мицелием гриба, накопление им в процессе роста органических кислот. Кроме этого под мицелием грибов создаются условия, благоприятные для развития других микроорганизмов.

Алюминиевые сплавы широко используются в аэрокосмической индустрии, судостроении. При длительном использовании устойчивость и надежность деталей и узлов агрегатов в значительной мере зависит от процессов коррозии, в том числе и от коррозии, вызванной микроорганизмами - биокоррозии. Микроорганизмы могут способствовать возникновению коррозионных повреждений и усиливать их, непосредственно воздействуя на кинетику электродных реакций.

Известно воздействие органических кислот на коррозионное повреждение металлов (Д.В. Белов, А.А. Калинина, Т.Н. Соколова, В.Ф. Смирнов, М.В. Челнокова, В.Р. Карташов. Прикл. биохимия и микробиология. 2012, Т. 48, №3, с. 302-307; Белов Д.В., Соколова Т.Н., Смирнов В.Ф., Кузина О.В., Косюкова Л.В., Карташов В.Р. // Коррозия: материалы, защита. 2007. №9. С. 36-41; Смирнов В.Ф., Белов Д.В., Соколова Т.Н. // Прикл. биохимия и микробиология. 2008. Т. 44. №2. С. 213-218; Белов Д.В., Соколова Т.Н., Карташов В.Р., Смирнов В.Ф., Челнокова М.В., Ляпина М.А. // Известия Вузов. Сер. Химия и химическая технология. 2007. Т. 50. №6. С. 60-64).

В некоторых случаях под их действием металлы корродируют даже более интенсивно, чем при действии неорганических кислот. Коррозия, например, емкостей с нефтепродуктами иногда является, видимо, результатом действия на алюминиевые сплавы органических кислот, образующихся при разложении нефтепродуктов микроорганизмами.

Известен способ испытания алюминия и его сплавов по ГОСТу 9.913-90 «Единая система защиты от коррозии и старения. Алюминий, магний и их сплавы. Методы ускоренных коррозионных испытаний», издательство стандартов, 1990 г., согласно которому испытания проводят в искусственно создаваемых условиях, имитирующих воздействие климатических факторов атмосферы. Данный способ осуществляют при полном погружении образцов из алюминия и его сплавов в электролит (3%-ный раствор хлористого натрия) с добавлением пероксида водорода при температуре 18-25°C. Продолжительность испытаний - 90 суток.

Известен способ проведения испытаний и нанесения суспензии спор грибов (метод №3) по ГОСТу 9.048-89 «Единая система защиты от коррозии и старения. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов», издательство стандартов, 1991 г. Изготавливают испытательные и контрольные образцы, подготовленные испытательные и контрольные образцы высушивают, испытательные образцы стерилизуют, готовят суспензию спор грибов для заражения образцов, затем наносят ее на простерилизованные испытательные образцы, и помещают, по крайней мере, по два образца в чашки Петри, закрывают их, контрольные образцы, обработанные дистиллированной водой, также располагают в чашках Петри. Чашки Петри с испытательными и контрольными образцами помещают в разные эксикаторы, на дно которых наливают воду для поддержания влажности более 90%, эксикаторы закрывают и выдерживают при комнатной температуре, проводят экспозицию испытательных и контрольных образцов, затем образцы извлекают из чашек Петри, промывают их в проточной воде и осматривают.

Недостатком таких способов испытаний является то, что они не соответствуют условиям биокоррозионных повреждений, возникающих на границе раздела фаз или сред в присутствии, что чрезвычайно важно, кислорода. Развитие биокоррозионных повреждений в анаэробных условиях - один из частных случаев биокоррозии. Обычно она развивается на поверхности металлов при наличии влаги и растворенного кислорода и углекислоты, которые принимают участие в процессах, как возможных электрохимических, определяющихся именно этими факторами, так и усиливающими их биологическими процессами. Именно такие поверхностные процессы коррозии могут осуществлять повреждение аппаратуры и других конструкционных поверхностей в гермозамкнутых объектах, способствовать формированию соответствующего сообщества микроорганизмов - деструкторов.

Известно, что в органических кислотах алюминий обычно разрушается очень медленно, за исключением таких кислот как муравьиная, щавелевая и некоторых хлоридсодержащих кислот, скорость растворения алюминия в которых велика (http://metallicheckiy-portal.ru/articles/zashita_ot_korrozii_metalla/aluminii/korrozia_v_razlichnix_sredax/9).

Задачей изобретения является моделирование начальных процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов АМг6 толщиной не более 2 мм с механически обработанной поверхностью в присутствии грибных метаболитов.

Техническим результатом изобретения является:

- имитация начальных процессов биокоррозии с помощью синтезируемых грибами, характерными обитателями гермозамкнутых объектов, продуктов: глюконовой, малоновой кислот;

- определение биокоррозионных эффектов (оценка начальных этапов биокоррозии и ее тип, исследование химического состава пораженной поверхности образцов);

- сокращение времени испытаний и приближение условий испытаний к натурным за счет применения глюконовой, малоновой кислот;

- упрощение метода испытаний, отсутствие необходимости создания условий для выращивания микроорганизмов и организации микробиологической лаборатории, блока для стерильных работ;

- возможность увеличения надежности и ресурса эксплуатации конструкционных материалов в присутствии технофильных микроорганизмов в эксплуатационных условиях гермозамкнутого объема.

Технический результат изобретения достигается за счет того, что в способе моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов, характеризующемся тем, что изготавливают испытательные и контрольные образцы из алюминиево-магниевых сплавов АМг6, подготовленные испытательные и контрольные образцы высушивают, испытательные образцы стерилизуют, готовят имитационный состав на основе органической кислоты, который наносят на простерилизованные испытательные образцы, и помещают, по крайней мере, по два образца в чашки Петри, закрывают их, контрольные образцы, обработанные дистиллированной водой, также располагают в чашках Петри, чашки Петри с испытательными и контрольными образцами помещают в разные эксикаторы, на дно которых наливают воду для поддержания влажности более 90%, эксикаторы закрывают и выдерживают при комнатной температуре, проводят экспозицию испытательных и контрольных образцов, затем образцы извлекают из чашек Петри, промывают их в проточной воде. Испытательные и контрольные образцы используют с механически обработанной поверхностью. Для приготовления имитационного состава используют дистиллированную воду и одну из органических кислот, выбранную из следующих карбоновых кислот: глюконовая или малоновая, полученный состав с помощью распылителя наносят на испытательные образцы алюминиево-магниевых сплавов АМг6, после промывания образцов в проточной воде их ополаскивают дистиллированной водой и высушивают, затем с помощью растрового электронного микроскопа оценивают начальные этапы биокоррозии и ее тип, исследуют химический состав пораженной поверхности образцов, при этом экспозицию испытательных и контрольных образцов проводят в течение 30-45 суток в трехкратной - пятикратной повторности.

Технический результат достигается также и тем, что имитационный состав для моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов включает органическую кислоту, растворитель, в качестве органической кислоты он содержит глюконовую кислоту, а в качестве растворителя - дистиллированную воду при следующем соотношении компонентов, мас.ч.:

5-10% раствор глюконовой кислоты - 0,05-0,10;

дистиллированная вода - 0,95-0,90.

Технический результат достигается также и тем, что имитационный состав для моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов включает органическую кислоту, растворитель, в качестве органической кислоты он содержит малоновую кислоту, а в качестве растворителя - дистиллированную воду при следующем соотношении компонентов, мас.ч.:

5-10% раствор малоновой кислоты - 0,05-0,10;

дистиллированная вода - 0,95-0,90.

Сущность изобретения поясняется графическими материалами.

В таблице 1 представлен процентный состав органических карбоновых кислот (общее содержание кислот принято за 100%), выделенных из культуральной жидкости грибов, выращенных на среде Чапека-Докса в глубинных условиях.

На фиг. 1, 2 представлены фотографии испытательных образцов алюминиево-магниевого сплава (Амг6), обработанные глюконовой кислотой; на фиг. 3, 4, 5 - фотографии испытательных образцов алюминиево-магниевого сплава (Амг6), обработанные малоновой кислотой; на фиг.6, 7 - фотографии контрольных образцов алюминиево-магниевого сплава (Амг6), обработанные дистиллированной водой; на фиг. 8, 9 - фотографии образцов алюминиево-магниевого сплава (Амг6), обработанные штаммом Aspergillus sidowii (Bainier et Sartory) Thom et Church BKM F-4037D.

Сущность изобретения заключается в следующем.

На углеводных субстратах различные технофильные микроорганизмы способны синтезировать и выделять в окружающую среду в зависимости от условий (температурно-влажностный режим) лимонную, янтарную, яблочную, уксусную, щавелевую, муравьиную, глюконовую, кетоглюконовую, малоновую и другие кислоты. При этом, кислоты могут взаимодействовать с оксидами алюминия, вызывая разрушение защитного оксидного слоя и способствуя контакту металла с мицелием, а также распространению мицелия по поверхности.

В проведенных опытах при выращивании в жидкой среде Чапека-Докса использовали различные штаммы по патенту RU 2486250 (27.06.2013): Paecilomyces variotii Bainier BKM F-4039D, Ulocladium botrytis Preuss BKM F-4032D, Penicillium chrysogenum Thom BKM F-4034D, Aspergillus sydowii (Bainier et Sartory) Thom et Church BKM F-4037D, Cladosporium sphaerospermum Penz. BKM F-4041D. Все эти культуры, принадлежащие к различным родам, были выделены с поверхности конструкционных материалов PC МКС и депонированы во Всероссийской коллекцией микроорганизмов (ВКМ) Института биохимии и физиологии микроорганизмов имени Г.К. Скрябина РАН (142290, г. Пущино Московской области, проспект Науки, 5).

Для изучения состава продуктов метаболизма, образуемых вышеперечисленными грибами в процессе роста, выращивание проводилось на среде Чапека-Докса. Была использована среда в соответствии ГОСТами 9.048-89 и 9.049-91 в ускоренных испытаниях образцов алюминиево-магниевого сплава АМг6. Для засева основных колб были получены 12-суточные культуры грибов в пробирках на агаризованной среде Чапека-Докса. Споровые суспензии грибов получали смывом стерильной водой с поверхности скошенной агаризованной среды. Жидкую среду Чапека-Докса готовили в качалочных колбах Эрленмейера емкостью 750 мл (по 100 мл) и после стерилизации засевали суспензией спор вышеперечисленных грибов, из расчета 5% посевного материала 5%-ной суспензией спор. Суспензию готовили следующим образом: в пробирку с культурой, растущей на скошенной среде Чапека-Докса, вносили по 10 мл жидкой среды Чапека-Докса. Затем с помощью пипетки снимали с поверхности споры гриба, закрыв пробирку пробкой, взбалтывали суспензию до получения однородного материала и быстро отбирали по 5 мл стерильной пипеткой и переносили в качалочную колбу. Культуры грибов выращивали на качалке при 29°C и 180 об/минуту в течение 4-5 суток. Затем культуральную жидкость отделяли от мицелия фильтрованием через стеклянный фильтр. В культуральной жидкости измеряли величину pH 5,5-6.0 и 1 мл культуральной жидкости лиофилизировали для получения модифицированных триметилсилильных производных и исследования состава продуктов метаболизма на газовом хроматографе с масс-селективным детектором (ГХ-МС).

Лиофильно высушенные образцы культуральной жидкости (по 1 мл культуральной среды растворяли в пиридине (99+% A.C.S. Sigma-Aldrich), добавляли силилирующий реагент BSTFA+TMCS 99:1 - N, О bis (trimethylsilyl) trifluoroacetamide)+trimethylchlorosilane (Supelco) и прогревали в герметично закупоренных флаконах при 60°C в течение 30 минут.

Хроматографический анализ проводили на газовом хроматографе SHIMADZU GS 2010 (Япония) с масс-селективным детектором QP 2010. Условия проведения анализа: температура термостата - 180°C; инжектора -200°C; интерфейса - 210°C; детектора - 200°C; газ - носитель - гелий, скорость потока 1,0 мл/минуту; деление потока 1:10; режим: 180°C 1 минута, 20°C /мин до 220°C, изотерма 5 минут, 30°C /мин до 270°C, изотерма 4 минуты. Диапазон регистрации масс 40-500. Библиотека масс спектров - NIST 05.

Таким образом, были получены хроматограммы культуральных жидкостей: Penicillium chrysogenum Thom BKM F-4034D; Aspergillus sydowii (Bainier et Sartory) Thom et Church BKM F-4037D; Ulocladium botrytis Preuss BKM F-4032D; Paecilomyces variotii Bainier BKM F-4039D; Cladosporium sphaerospermum Penz. BKM F-4041D.

Затем проводили идентификацию веществ культуральных жидкостей по соответствующим пикам на хроматограммах, используя библиотеку NIST 05, и выявили, что у большинства исследованных грибов глюконовая и ее производная - 2-кето-глюконовая кислота (при микробном окислении глюконовая кислота легко переходит в 5-кетоглюконовую и 2-кетоглюконовую кислоты), а также малоновая кислота составляют большую часть от всех идентифицированных продуктов, выделяемых грибами в культуральную жидкость (таблица 1).

Глюконовая кислота (альдоновая кислота) СН2ОН(СНОН)4СООН - одноосновная карбоновая кислота:

Глюконовая кислота образуется при окислении альдегидной группы глюкозы, представляет собой белый, легко плавящийся гигроскопичный кристаллический порошок без запаха со слегка кисловатым вкусом. Образует соли - глюконаты.

Малоновая кислота (пропандиовая, метандикарбоновая кислота) НООССН2СООН - двухосновная предельная карбоновая кислота:

Малоновая кислота обладает всеми химическими свойствами, характерными для карбоновых кислот. Соли и сложные эфиры малоновой кислоты называются малонатами. Малонат кальция содержится в соке сахарной свеклы. Двухосновные кислоты могут давать два ряда солей, сложных эфиров амидов и других производных. В промышленности получают гидролизом циануксусной кислоты. Малоновая кислота используется в синтезе непредельных кислот, флавонов, аминокислот, витаминов B1 и В6.

За основу метода проведения испытаний и нанесения имитационного состава на основе органической карбоновой кислоты на поверхность образцов алюминиево-магниевых сплавов АМг6 взяты методы, описанные в ГОСТах 9.048-89 (метод №3) и 9.049-91. Испытания по биокоррозионным поражениям проводят при комнатной температуре и влажности более 90% в течение 30-45 суток. Испытания проводят во влажной камере (эксикаторе).

Для испытаний используют две выборки образцов: испытательную и контрольную. Испытательная выборка предназначена для определения интенсивности развития биокоррозионного поражения с помощью имитационного состава для его моделирования и определения действия на параметры изделий, контрольная выборка - для определения действия на параметры изделий повышенной влажности (более 90%) и при комнатной температуре (25±2)°С воздуха без действия имитационного состава, с целью сопоставления с результатами испытаний из испытательной выборки. Испытательные и контрольные образцы изготавливают из цилиндрических заготовок конструкционного материала - алюминиево-магниевого сплава толщиной АМг6 5 мм и диаметром 12 мм (ГОСТ/ТУ - 1-90395-91, плавка партии №89606) с механически обработанной поверхностью. Образцы промывают в дистиллированной воде, обезжиривают органическим растворителем (например, ацетоном ГОСТ 2768-84).

Подготовленные таким образом образцы стерилизуют в 70%-ном этаноле в течение 1 часа и высушивают.

Готовят имитационный состав на основе органической карбоновой кислоты. Для его приготовления используют дистиллированную воду и одну из органических кислот, выбранную из следующего ряда карбоновых кислот: глюконовая и малоновая.

Для приготовления имитационного состава по первому варианту (п. 2 формулы изобретения) взвешивают на технических весах 5 г глюконовой кислоты, используя реактив марки х.ч. (химически чистый). Затем на технических весах взвешивают пустой стеклянный стакан емкостью 200 мл. В него наливают дистиллированную воду, доводя ее массу до 95 г. Взвешенную глюконовую кислоту частями добавляют в стакан со взвешенным растворителем - дистиллированной водой, размешивая каждую новую порцию до полного растворения. Для приготовления имитационного состава по первому варианту (п. 2 формулы изобретения) взвешивают на технических весах 10 г глюконовой кислоты, используя реактив марки х.ч. Затем на технических весах взвешивают пустой стеклянный стакан, емкостью 200 мл. В него наливают дистиллированную воду, доводя ее массу до 90 г. Взвешенную глюконовую кислоту частями добавляют в стакан со взвешенным растворителем - дистиллированной водой, размешивая каждую новую порцию до полного растворения.

Для приготовления имитационного состава по второму варианту (п. 3 формулы изобретения) на технических весах взвешивают 5 г малоновой кислоты (ТУ 6-09-2608-77). Затем на технических весах взвешивают пустой стеклянный стакан, емкостью 200 мл. В него наливают дистиллированную воду, доводя ее массу до 96,4 г. Взвешенную малоновую кислоту частями добавляют в стакан со взвешенным растворителем - дистиллированной водой, размешивая каждую новую порцию до полного растворения.

Для приготовления имитационного состава по второму варианту (п. 3 формулы изобретения) на технических весах взвешивают 10 г малоновой кислоты (ТУ 6-09-2608-77). Затем на технических весах взвешивают пустой стеклянный стакан, емкостью 200 мл. В него наливают дистиллированную воду, доводя ее массу до 91,2 г. Взвешенную малоновую кислоту частями добавляют в стакан со взвешенным растворителем - дистиллированной водой, размешивая каждую новую порцию до полного растворения.

Полученные растворы (имитационные составы) используют для обработки испытательных образцов с целью моделирования начальных этапов биокоррозионных поражений герметичных оболочек из алюминиево-магниевых сплавов АМг6.

Приготовленный имитационный состав по одному из вариантов наносят на простерилизованные испытательные образцы с помощью распылителя, и помещают по 2-5 образца в чашки Петри. Затем для сохранения нанесенного состава на поверхности образцов в мелкораспыленном состоянии чашки Петри быстро закрывают крышками. Контрольные образцы, обработанные дистиллированной водой, также располагают в чашках Петри. Чашки Петри с испытательными и контрольными образцами помещают в разные эксикаторы, на дно которых наливают воду для поддержания влажности более 90%, эксикаторы закрывают и выдерживают при комнатной температуре. Экспозицию испытательных и контрольных образцов проводят в течение 30-45 суток. Затем образцы извлекают из чашек Петри, промывают в проточной воде, ополаскивают дистиллированной водой и высушивают. Контрольные образцы подвергают точно такой же обработке. Эксперименты проводят в трехкратной-пятикратной повторности для каждого имитационного состава (два варианта).

Испытательные и контрольные образцы хранят в стерильных чашках Петри до исследования в сканирующем электронном микроскопе.

Затем образцы исследуют в многофункциональном растровом электронном микроскопе (РЭМ) с интегрированной системой фокусированного ионного пучка для структурной диагностики и автоматизированных исследований в промышленных и лабораторных условиях Quanta-3D (FEI, Hillsboro, OR, США) при ускоряющем напряжении 15 кВ.

Далее проводят оценку влияния имитационного состава на процесс начальных этапов биокоррозии образцов и сравнение смоделированного биокоррозионного поражения с биокоррозионным поражением известными штаммами микроорганизмов по патенту RU 2486250 (27.06.2013). Таким образом, оценивают влияние имитационного состава на свойства алюминиево-магниевого сплава согласно ГОСТа 9.049-91 (п. 1.7.2, 1.7.3).

Электронные фотографии 8 и 9 выполнены на Quanta-3D (FEI, Hillsboro, OR, США). На фото представлены изображения поверхности образца АМг6, обработанного спорами известных грибов (фиг. 8, 9) по патенту RU 2486250 (27.06.2013) и имитационным составом по одному из вариантов (фиг. 1-5).

Исследование химического состава производилось с помощью приставки для рентгеновского энергодисперсионного микроанализа EDAX (EDAX Inc., Mahwah, NJ, США) с ультратонким окном. Рентгеновский микроанализ поверхности образцов АМг6 показал, что в составе поверхностных слоев образцов отчетливо наблюдаются пики, соответствующие линиям от Al, Mg, О и С. Судя по данным анализа, в случае происходит высвобождение магния, что указывает на разрушение зерен сплава, в которых магний локализуется по краям кристаллитов.

Таким образом, при воздействии продуктов жизнедеятельности грибов, включающих также и органические кислоты, может идти межкристаллитная коррозия, для которой характерно разрушение сплава по границам кристаллитов (зерен) (ГОСТ 9.908-85), и которая является весьма опасным видом коррозии, так как ведет к потере механической прочности сплава. Биокоррозионные спектры характеризуются появлением новых элементов - магния, кальция, серы, фосфора, натрия и др. Смоделированная коррозия характеризуется появлением кислорода: оксидов или гидрооксидов.

Можно заключить, что методы современной микроскопии позволяют успешно описывать структуру и характер различных повреждений поверхности алюминий-магниевых сплавов, что делает их использование необходимым при тестировании и контроле конструкционных поверхностей в аппаратах, которые будут длительно использоваться на околоземной орбите, а также длительных полетах.


СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ БИОКОРРОЗИОННЫХ ПОРАЖЕНИЙ ТОНКОСТЕННЫХ ГЕРМЕТИЧНЫХ ОБОЛОЧЕК ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ ПРИ ЭКСПЛУАТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И ИМИТАЦИОННЫЙ СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ БИОКОРРОЗИОННЫХ ПОРАЖЕНИЙ ТОНКОСТЕННЫХ ГЕРМЕТИЧНЫХ ОБОЛОЧЕК ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ ПРИ ЭКСПЛУАТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И ИМИТАЦИОННЫЙ СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)
СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ БИОКОРРОЗИОННЫХ ПОРАЖЕНИЙ ТОНКОСТЕННЫХ ГЕРМЕТИЧНЫХ ОБОЛОЧЕК ИЗ АЛЮМИНИЕВО-МАГНИЕВЫХ СПЛАВОВ ПРИ ЭКСПЛУАТАЦИИ КОСМИЧЕСКИХ АППАРАТОВ И ИМИТАЦИОННЫЙ СОСТАВ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 271-280 из 370.
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
Показаны записи 271-280 из 292.
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
26.08.2017
№217.015.de7e

Способ определения выходного тока солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение и измерение тока от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ. Определяют текущее значение угла...
Тип: Изобретение
Номер охранного документа: 0002624763
Дата охранного документа: 06.07.2017
26.08.2017
№217.015.df0b

Способ определения характеристик оптического канала передачи информационного сигнала

Способ определения характеристик оптического канала передачи информационного сигнала включает в себя измерение затухания оптического канала от источника оптического излучения до приемника оптического излучения. При этом производят перемещение лазерного пучка согласованно с линейным перемещением...
Тип: Изобретение
Номер охранного документа: 0002624976
Дата охранного документа: 11.07.2017
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
+ добавить свой РИД