×
13.01.2017
217.015.863a

Результат интеллектуальной деятельности: СПОСОБ ГИДРОКРЕКИНГА УГЛЕВОДОРОДНОГО СЫРЬЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу гидрокрекинга углеводородного сырья, заключающемуся в превращении высококипящего сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч, объемном отношении водород/сырье 800-2000 нм/м в присутствии гетерогенного катализатора. При этом используемый катализатор содержит никель и молибден в форме биметаллических комплексных соединений [Ni(HO)(L)][MoO(CHO)], где L - частично депротонированная форма лимонной кислоты СНO; х=0 или 2; у=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-АlOз и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: [Ni(HO)(L)][MoO(CHO)] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-AlO - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МoО - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-АlO - остальное. Предлагаемый способ позволяет получить средние дистилляты с низким остаточным содержанием серы. 2 з.п. ф-лы, 3 табл., 6 пр.

Изобретение относится к каталитическим способам получения низкосернистых средних дистиллятов из высококипящего углеводородного сырья.

В настоящее время в российской нефтеперерабатывающей промышленности наблюдаются следующие тенденции: повышение глубины переработки нефти за счет увеличения доли перерабатываемых высококипящего углеводородного сырья и ужесточение экологических требований к моторным топливам. Гидрокрекинг углеводородного сырья позволяет одновременно увеличить глубину нефтепереработки и улучшить экологические показатели моторных топлив, а именно снизить содержание серы и ароматических соединений. Наиболее ценным продуктом гидрокрекинга является дизельная фракция. Таким образом, актуальной задачей является создание новых процессов получения низкосернистых средних дистиллятов из высококипящего углеводородного сырья.

Известны различные способы гидрокрекинга углеводородного сырья, в том числе и сложные многоступенчатые процессы или процессы с многослойной загрузкой различных катализаторов, однако основным недостатком для них является низкий выход дизельной фракции, обусловленный низкой активностью и селективностью по отношению к дизельной фракции используемых катализаторов. Существующие процессы гидрокрекинга вследствие низкой селективности используемых катализаторов по отношению к дизельной фракции не позволяют достигать высоких выходов дизельной фракции даже при ужесточении условий, например увеличении температуры процесса. Кроме того, требуется высокая стартовая температура для известных способов гидрокрекинга вследствие низкой активности катализаторов, что приводит к меньшему циклу пробега катализатора до его дезактивации.

Чаще всего гидрокрекинг углеводородного сырья проводят в присутствии катализаторов, содержащих оксиды никеля и молибдена или вольфрама, нанесенные на носитель, содержащий аморфный алюмосиликат, высококремниземистый цеолит Y и оксид алюминия. Так известен способ гидрокрекинга в присутствии катализатора [РФ №2540071], наиболее предпочтительно содержащего 10-20 мас. % вольфрама или молибдена, 1-6 мас. % никеля, а его носитель содержит суммарно 10-50 мас. % цеолитов Y и бета, а остальное составляет аморфный алюмосиликат, причем содержание цеолита бета составляет 0.5-10 мас. %. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг·л-1·ч-1. Основным недостатком способа проведения процесса гидрокрекинга является низкий выход дизельной фракции.

Известен еще один способ гидрокрекинга в присутствии катализатора [РФ №2366505], наиболее предпочтительно содержащего 21 мас. % WO3, 5 мас. % NiO, а его носитель наиболее предпочтительно содержит суммарно 20-80 мас. % суммарно ультрастабильного цеолита Y и низкокремнеземного цеолита Y либо цеолита бета, либо цеолита ZSM-5, а остальное - связующее в виде аморфного алюмосиликата и оксида алюминия, причем содержание низкокремнеземного цеолита Y, цеолита бета, цеолита ZSM-5 составляет 0,5-10%. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 250-2000 нл/кг и объемной скорости подачи сырья 0,5-5 кгл-1·ч-1. Основным недостатком способа проведения процесса гидрокрекинга является низкий выход дизельной фракции.

С целью увеличения выхода дизельной фракции процесс гидрокрекинга можно проводить в присутствии катализаторов, содержащих в качестве гидрирующих компонентов трехкомпонентную систему (Ni+Mo+W), в качестве кислотного компонента - фтористый алюминий, а в качестве промоторов - оксид бора, оксид циркония или их смесь.

Так известен способ гидрокрекинга в присутствии катализатора [РФ №2245737], содержащего, мас. %: гидрирующие компоненты 15-30% (оксиды никеля, молибдена и вольфрама при массовом соотношении 25:35:40), кислотный компонент (фтористый алюминий) 20-40 промотор (оксид бора и/или циркония) 1-4, связующее (оксид алюминия, алюмосиликат, глину или их смесь) до 100%. При этом процесс гидрокрекинга ведут при температуре 380-430°С, давлении 3-10 МПа, при соотношении водород/сырье 250-1000 нм33 и объемной скорости подачи сырья 1-3 ч-1. Основным недостатком такого способа проведения процесса гидрокрекинга является низкий выход дизельной фракции.

Наиболее близким по своей технической сущности к заявляемому способу гидрокрекинга является способ гидрокрекинга углеводородного сырья [WO 2013092806 A1, B01J 21/12, C10G 47/12, 27/06/2013] в присутствии катализатора, включающего в свой состав никель, молибден или вольфрам, носитель на основе аморфного алюмосиликата и полигидроксисоедниения С312. Компоненты в катализаторе наиболее предпочтительно содержатся в следующих концентрациях, мас. %: никель 3-6, молибден 10-16 или вольфрам 15-22, сукроза и/или глюконовая кислота 5-20. Причем катализатор после нанесения активных металлов сушат при температуре не более 200°С. При этом процесс гидрокрекинга ведут при температуре 300-450°С, давлении 8-20 МПа, при соотношении водород/сырье 200-3000 нл/кг и объемной скорости подачи сырья 0,2-5 кг·л-1·ч-1.

Основным недостатком прототипа, также как и других известных процессов, является низкий выход дизельной фракции.

Изобретение решает задачу создания улучшенного способа гидрокрекинга углеводородного сырья,

Технический результат - высокий выход средних дистиллятов с низким остаточным содержанием серы при гидрокрекинге высококипящего углеводородного сырья при достаточно мягких условиях проведения процесса.

Задача решается проведением процесса гидрокрекинга высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии катализатора, содержащего никель, молибден, алюминий и кремний, при этом никель и молибден содержатся в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2], где L - частично депротонированная форма лимонной кислоты С6Н5О7; х=0 или 2; y=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. При этом катализатор имеет объем пор 0,41-0,72 см /г, удельную поверхность 154-282 м2/г и средний диаметр пор 9,2-12 нм и представляет собой частицы с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа. В качестве аморфного алюмосиликата могут использоваться алюмосиликаты с массовым отношением Si/Al от 0,6 до 0,85, характеризующиеся рентгенограммами, содержащими широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

Отличительным признаком предлагаемого способа гидрокрекинга углеводородного сырья по сравнению с прототипом является то, что процесс гидрокрекинга проводят при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии катализатора, содержащего, мас. %.: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. Выход содержания и массового отношения компонентов катализатора за заявляемые границы приводит к уменьшению активности катализатора в целевых реакциях гидрокрекинга и к уменьшению селективности катализатора по отношению к дизельной фракции.

Вторым существенным отличительным признаком предлагаемого способа гидрокрекинга является то, что используемый катализатор содержит аморфный алюмосиликат с массовым отношением Si/Al = от 0,6 до 0,85, характеризующийся рентгенограммой, содержащей широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

Технический результат предлагаемого способа гидрокрекинга складывается из следующих составляющих:

1. Проведение процесса гидрокрекинга в присутствии катализатора, имеющего в своем составе биметаллические соединения, что обеспечивает образование гидрирующего компонента, имеющего повышенный уровень активности в реакциях гидрирования, и, как следствие, обеспечивающего высокий выход дизельной фракции.

2. Проведение процесса гидрокрекинга в присутствии катализатора, содержащего аморфный алюмосиликат в заявляемых концентрациях, что обеспечивает высокую активность в гидрокрекинге углеводородного сырья.

3. Использование в процессе гидрокрекинга катализатора, содержащего аморфный алюмосиликат с массовым отношением Si/Al=0,6-0,85, имеющего кислотные центры оптимальной силы, что обуславливает высокую селективность процесса по отношению к дизельной фракции, обеспечивая высокий выход дизельной фракции.

Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, не присущего признакам в разобщенности, то есть поставленная задача достигается не суммой эффектов, а новым сверхэффектом суммы признаков.

Описание предлагаемого технического решения

Гидрокрекинг тяжелого вакуумного газойля с содержанием серы 3,39% S, температурой дистилляции 5% об. 355°С и температурой дистилляции 98% об. 580°С проводят при температуре 390°С, давлении 10 МПа, массовом расходе сырья 0,82 ч-1, объемном соотношение водород/сырье - 1130 н. нм33 в присутствии катализатора, содержащего, мас. %.: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-Al2O3 - остальное. При этом массовое соотношение Si/Al в аморфном алюмосиликате составляет от 0,6 до 0,85, причем рентгенограммы аморфных алюмосиликатов содержат широкий пик в области 16,5-33,5° с максимумом 23,1-23,4°.

Сущность изобретения иллюстрируется следующими примерами и таблицами.

Пример 1 (Согласно известному техническому решению)

Готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 42,7 г порошка аморфного алюмосиликата. К смеси добавляют 90 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя с влагоемкостью 0,81 мл/г.

Готовят пропиточный раствор, для чего добавляют к 43 мл воды 22,84 г MoO3, 4,56 г NiO, 8,53 г 80% водного раствора ортофосфорной кислоты. Полученную смесь кипятят в течение одного часа, в результате получают прозрачный зеленый раствор. К полученному раствору добавляют 17,5 г 50% водного раствора глюконовой кислоты. Полученный раствор кипятят 15 мин, раствор приобретает темносиний с зеленоватым оттенком цвет. Раствор разбавляют до 57 мл и пропитывают им 70 г носителя. После этого катализатор сушат при температуре 100°С в течение 12 ч.

Полученный катализатор содержит в пересчете на сухие вещества мас. %.: Ni - 3,5, Mo - 15,0, Р - 2,2, глюконовая кислота - 8,53, носитель до 100%.

Навеску катализатора, эквивалентную 22 г прокаленного катализатора, смешивают с 50 г карбида кремния (0,2-0,6 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой прямогонное дизельное топливо с содержанием серы 1,45% S, в которое дополнительно добавлен диметилдисульфид с концентрацией 12 г/л. Сульфидирование проводят при 3,5 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 4 ч при 240°С, а затем 4 ч при 260°С и затем 8 ч при 340°С. Далее катализатор тестируют в гидрокрекинге тяжелого вакуумного газойля с содержанием серы 3,39% S, температурой дистилляции 5% об. 355°С и температурой дистилляции 98% об. 580°С. Процесс гидрокрекинга проводят при температуре 390°С, давлении 10 МПа, массовом расходе сырья 0,82 ч-1, объемном соотношение водород/сырье - 1130 нм33. Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Примеры 2-6 иллюстрируют предлагаемое техническое решение.

Пример 2

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала порошок аморфного алюмосиликата с массовым отношением Si/Al=0,6, содержащий широкий пик в области 16,5-33,5° с максимумом 23,1° прокаливают при температуре 700°С в течение 4 ч. Готовят носитель, содержащий 70 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 28,0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 59,0 г прокаленного порошка аморфного алюмосиликата с массовым отношением Si/Al=0,6. К смеси добавляют 105 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме четырехлистинка с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя имеющего влагоемкость 1.02 мл/г.

Готовят водный раствор, содержащий 17,5 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл воды при 70°С и перемешивании последовательно растворяют 9,48 г лимонной кислоты С6Н3О7, 10,96 г парамолибдата аммония (NH4)6Mo7024·4H20, 3,75 г основного карбоната никеля NiCO3·mNi(ОН)2·nH2O. Далее добавлением воды объем раствора доводят до 71 мл ИК- и ЯМР-спектры полученного раствора содержат пики, характерные для [Ni(H2O)2]2[Mo4O11(C6H5O7)2] (таблица 1 и таблица 2). 70 г носителя пропитывают по влагоемкости 75 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,6.

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 20,0; аморфный алюмосиликат - 56,0; γ-Al2O3 - 24,0%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 11,0; NiO - 2,9; аморфный алюмосиликат - 60,3; Al2O3 - остальное.

Катализатор имеет объем пор 0,72 см3/г, удельную поверхность 282 м2/г и средний диаметр пор 10,3 нм, и представляет собой частицы с сечением в виде четырехлистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,14 МПа.

Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Пример 3

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала порошок аморфного алюмосиликата с массовым отношением Si/Al=0,85, имеющий широкий пик в области 16,5-33,5° с максимумом 23,4° прокаливают при температуре 700°С в течение 4 ч. Готовят носитель, содержащий 70 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 28,0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 62,0 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,85. К смеси добавляют 110 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями с диаметрами 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя, имеющего влагоемкость 1.13 мл/г. Готовят водный раствор, содержащий 17,5 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2] аналогично примеру 2. Добавлением воды объем раствора доводят до 79 мл. 70 г носителя пропитывают по влагоемкости 79 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,1°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 20,0; аморфный алюмосиликат - 56,0; γ-Al2O3 - 24,0%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 11,0; NiO - 2,9; аморфный алюмосиликат - 60,3; Al2O3 - остальное.

Катализатор имеет объем пор 0,69 см3/г, удельную поверхность 272 м2/г и средний диаметр пор 10,2 нм, и представляет собой частицы с сечением в виде круга с диаметром 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,11 МПа.

Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Пример 4

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 50 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 46,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 44,3 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,85 имеющего широкий пик в области 16,5-33,5° с максимумом 23,4°. К смеси добавляют 105 мл воды и 7,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя имеющего влагоемкость 1.06 мл/г. Готовят водный раствор, содержащий 17,5 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2] аналогично примеру 2. Добавлением воды объем раствора доводят до 74 мл. 70 г носителя пропитывают по влагоемкости 74 мл полученного раствора. Катализатор сушат на воздухе при 120°С.Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 20,0; аморфный алюмосиликат - 56,0; γ-Al2O3 - 24,0%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 11,0; NiO - 2,9; аморфный алюмосиликат - 60,3; Al2O3 - остальное.

Катализатор имеет объем пор 0,41 см3/г, удельную поверхность 154 м2/г и средний диаметр пор 10,7 нм и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,57 МПа.

Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Пример 5

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 50 мас. % аморфного алюмосиликата, аналогично примеру 3. Готовят водный раствор, содержащий 10,5 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл воды при 70°С и перемешивании последовательно растворяют 5,7 г лимонной кислоты С6Н3О7, 6,59 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 2,26 г основного карбоната никеля NiCO3·mNi(ОН)2·nH2O. Добавлением воды объем раствора доводят до 74 мл. 70 г носителя пропитывают по влагоемкости 74 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,85.

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 13,1; аморфный алюмосиликат - 43,4; γ-Al2O3 - 43,5%, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 7,0; NiO - 1,8; аморфный алюмосиликат - 45,6; Al2O3 - остальное.

Катализатор имеет объем пор 0,41 см3/г, удельную поверхность 189 м2/г и средний диаметр пор 12 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,34 МПа.

Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Пример 6

Гидрокрекинг тяжелого вакуумного газойля проводят в присутствии катализатора, который готовят следующим образом: сначала готовят носитель, содержащий 80 мас. % аморфного алюмосиликата. В смесителе с Z-образными лопастями перемешивают 18,7 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 70,9 г порошка аморфного алюмосиликата с массовым отношением Si/Al=0,85 имеющего широкий пик в области 16,5-33,5° с максимумом 23,4°. К смеси добавляют 115 мл воды и 8,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 минут и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1,6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 70 г готового носителя, имеющего влагоемкость 1,17 мл/г.

Готовят водный раствор, содержащий 21,3 г [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл воды при 70°С и перемешивании последовательно растворяют 11,54 г лимонной кислоты С6Н3О7, 13,34 г парамолибдата аммония (NH4)6Mo7O24×4H2O, 4,57 г основного карбоната никеля NiCO3·mNi(ОН)2·nH2O. Далее добавлением воды объем раствора доводят до 82 мл ИК- и ЯМР-спектры полученного раствора содержат пики, характерные для [Ni(H2O)2]2[Mo4O11(C6H5O7)2] (таблица 1 и таблица 2). 70 г носителя пропитывают по влагоемкости 82 мл полученного раствора. Катализатор сушат на воздухе при 120°С. Рентгенограмма полученного катализатора содержит пик с максимумом 23,4°, соответствующий аморфному алюмосиликату с массовым отношением Si/Al=0,6.

Полученный катализатор содержит, мас. %: [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] - 23,3; аморфный алюмосиликат - 61,3; γ-Al2O3 - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: MoO3 - 13,0; NiO - 3,4; аморфный алюмосиликат - 66,9; Al2O3 - остальное.

Катализатор имеет объем пор 0,49 см /г, удельную поверхность 213 м /г и средний диаметр пор 9,2 нм, и представляет собой частицы с сечением в виде трилистника с диаметром описанной окружности 1,0-1,6 мм и длиной до 20 мм. Объемная механическая прочность катализатора, измеренная по методу Shell SMS 1471, равна 1,01 МПа.

Результаты гидрокрекинга тяжелого вакуумного газойля приведены в таблице 3.

Таким образом, как видно из приведенных примеров и таблиц, предлагаемый способ гидрокрекинга углеводородного сырья обеспечивает значительно больший выход дизельной фракции, чем известный способ.

δ - химический сдвиг, ppm; W - ширина линии, Гц; I - относительная интенсивность.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 135.
20.08.2016
№216.015.4c38

Способ получения α-метилзамещенных карбонильных соединений

Изобретение относится к способу получения α-метилзамещенных карбонильных соединений общей формулы R-CO-CR(CH)-R, где: R и R - водород Н или линейный или разветвленный алкил радикал, содержащий от 1 до 12 углеродных атомов, R - Н или СН радикал, которые являются исходным сырьем для получения...
Тип: Изобретение
Номер охранного документа: 0002594483
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72d8

Способ получения производных 1-пиразолина

Изобретение относится к области органического синтеза, более конкретно к получению трициклических производных 1-пиразолина, содержащих от 9 до 13 атомов углерода, альдегидную группу и 5-членный цикл с диаза-группой. Способ основан на реакции C-C омега-алкенилпроизводных норборнена, например...
Тип: Изобретение
Номер охранного документа: 0002598077
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7a91

Способ приготовления гранулированного носителя и адсорбента

Изобретение относится к способу получения носителя для катализатора паровой конверсии и высокотемпературных абсорбентов диоксида углерода. Описан способ получения носителя из оксида иттрия, включающий получение композиции указанного выше материала с этиленгликолем, укладку композиции в...
Тип: Изобретение
Номер охранного документа: 0002600449
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ac5

Способ оценки степени деформаций диафиза трубчатой кости и определения величины и уровня коррекции деформации для ее хирургического исправления

Изобретение относится к медицине, ортопедии и касается определения параметров при хирургической коррекции формы трубчатой кости. Для оценки степени деформаций диафиза трубчатой кости с определением величины и уровня коррекции деформации для ее хирургического исправления проводят...
Тип: Изобретение
Номер охранного документа: 0002600070
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7acf

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения катализатора окислительной конверсии (окислительного дегидрирования) этана в этилен. Описан способ получения оксидных катализаторов состава MoVTeNbO, где а=0,20-0,40, b=0,15-0,35, с=0,05-0,25, x - количество атомов кислорода, требуемых для соблюдения...
Тип: Изобретение
Номер охранного документа: 0002600455
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7b5b

Способ метилирования бензола

Изобретение относится к способу метилирования бензола. Способ характеризуется тем, что в качестве метилирующего агента используют диметилдисульфид, процесс осуществляют в присутствии катализатора - высококремнистого цеолита HZSM-5, в газовой фазе при атмосферном давлении, при температуре...
Тип: Изобретение
Номер охранного документа: 0002600453
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ba0

Катализатор (варианты), способ его приготовления и способ получения ацетальдегида

Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов. При этом в качестве активного компонента катализатор содержит цеолит структуры: МТТ, TON, имеющие состав: x AlO - y ElO...
Тип: Изобретение
Номер охранного документа: 0002600452
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.83ca

Способ селективного гидрирования ацетиленовых углеводородов

Изобретение относится к способу селективного гидрирования ацетиленовых углеводородов в среде олефинов и диолефинов, включающему пропускание через слой катализатора потока водорода, олефинов и/или диолефинов, содержащих примеси ацетиленовых углеводородов. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002601751
Дата охранного документа: 10.11.2016
Показаны записи 71-80 из 193.
20.08.2016
№216.015.4c38

Способ получения α-метилзамещенных карбонильных соединений

Изобретение относится к способу получения α-метилзамещенных карбонильных соединений общей формулы R-CO-CR(CH)-R, где: R и R - водород Н или линейный или разветвленный алкил радикал, содержащий от 1 до 12 углеродных атомов, R - Н или СН радикал, которые являются исходным сырьем для получения...
Тип: Изобретение
Номер охранного документа: 0002594483
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72d8

Способ получения производных 1-пиразолина

Изобретение относится к области органического синтеза, более конкретно к получению трициклических производных 1-пиразолина, содержащих от 9 до 13 атомов углерода, альдегидную группу и 5-членный цикл с диаза-группой. Способ основан на реакции C-C омега-алкенилпроизводных норборнена, например...
Тип: Изобретение
Номер охранного документа: 0002598077
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7a91

Способ приготовления гранулированного носителя и адсорбента

Изобретение относится к способу получения носителя для катализатора паровой конверсии и высокотемпературных абсорбентов диоксида углерода. Описан способ получения носителя из оксида иттрия, включающий получение композиции указанного выше материала с этиленгликолем, укладку композиции в...
Тип: Изобретение
Номер охранного документа: 0002600449
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ac5

Способ оценки степени деформаций диафиза трубчатой кости и определения величины и уровня коррекции деформации для ее хирургического исправления

Изобретение относится к медицине, ортопедии и касается определения параметров при хирургической коррекции формы трубчатой кости. Для оценки степени деформаций диафиза трубчатой кости с определением величины и уровня коррекции деформации для ее хирургического исправления проводят...
Тип: Изобретение
Номер охранного документа: 0002600070
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7acf

Способ получения оксидных катализаторов для процесса окислительной конверсии этана в этилен

Изобретение относится к способу получения катализатора окислительной конверсии (окислительного дегидрирования) этана в этилен. Описан способ получения оксидных катализаторов состава MoVTeNbO, где а=0,20-0,40, b=0,15-0,35, с=0,05-0,25, x - количество атомов кислорода, требуемых для соблюдения...
Тип: Изобретение
Номер охранного документа: 0002600455
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7b5b

Способ метилирования бензола

Изобретение относится к способу метилирования бензола. Способ характеризуется тем, что в качестве метилирующего агента используют диметилдисульфид, процесс осуществляют в присутствии катализатора - высококремнистого цеолита HZSM-5, в газовой фазе при атмосферном давлении, при температуре...
Тип: Изобретение
Номер охранного документа: 0002600453
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7ba0

Катализатор (варианты), способ его приготовления и способ получения ацетальдегида

Изобретение относится к катализаторам (вариантам) для получения ацетальдегида в процессе изомеризации окиси этилена, а также к способу приготовления заявленных катализаторов. При этом в качестве активного компонента катализатор содержит цеолит структуры: МТТ, TON, имеющие состав: x AlO - y ElO...
Тип: Изобретение
Номер охранного документа: 0002600452
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.83ca

Способ селективного гидрирования ацетиленовых углеводородов

Изобретение относится к способу селективного гидрирования ацетиленовых углеводородов в среде олефинов и диолефинов, включающему пропускание через слой катализатора потока водорода, олефинов и/или диолефинов, содержащих примеси ацетиленовых углеводородов. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002601751
Дата охранного документа: 10.11.2016
+ добавить свой РИД