×
13.01.2017
217.015.8620

Результат интеллектуальной деятельности: ОПТОАКУСТИЧЕСКИЙ ОБЪЕКТИВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим каналом в центральной части, и оптоволокно, размещенное в цилиндрическом канале, а также переходное устройство, снабженное боковым штуцером для введения иммерсионной жидкости. Один конец переходного устройства закреплен в канале со стороны пьезоэлектрического преобразователя, а второй снабжен уплотняющей втулкой для герметизации оптоволокна. Диаметр канала и внутренний диаметр переходного устройства превышают диаметр оптоволокна на величину, обеспечивающую прохождение иммерсионной жидкости от штуцера к акустической линзе. Технический результат - обеспечение подачи иммерсионной жидкости непосредственно к области сканирования через канал в звукопроводе оптоакустического объектива, упрощение конструкции, возможность изменять глубину зондирования и область фокусировки лазерного излучения во время исследования. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов и может использоваться как объектив устройств для фотоакустической визуализации микрообъектов и неразрушающего контроля поверхности и приповерхностного слоя материалов в медицине, биологии, нанотехнологиях и промышленности.

В известных реализациях фотоакустические объективы имеют многокомпонентную систему зеркал, призм, линз или их комбинаций для фокусировки лазерного излучения, что усложняет их конструкцию и процесс изготовления. Также в известных конструкциях объективов отсутствует система подстраиваемой фокусировки лазерного излучения в процессе исследований, которая представляет интерес для объемного анализа структуры образца или для обнаружения дефектов. Кроме того, для всех известных оптоакустических объективов необходимо, или использовать ванну с иммерсионной жидкостью, или наносить слой иммерсионной жидкости на область сканирования перед началом работы. Использование ванны ограничивает применение таких объективов при исследовании образцов под углом к горизонту, образцов со сложной геометрией, а также усложняет процесс исследования биологических тканей у животных (погружение исследуемой области животного в ванну требует его анестезии.

В том случае, когда рассматриваемая область находится в районе дыхательных путей, дополнительно требуется специальная система подведения воздуха (статьи: «Noninvasivelaser-induced photoacoustic tomography for structural and functional invivo imaging of the brain / Xueding Wang, YongjiangPang, Geng Ku, Xueyi Xie, George Stoica&Lihong V.Wang // Nature Biotechnology. - 2003, Vol. 21, pp. 803-806; Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography / Meng-LinLi, Jung-TaekOh, XieX., Ku. G., WeiWang, ChunLi, Lungu. G., Stoica. G., Wang, L.V. // Proceedings of the IEEE.-2008, Vol. 96, Is. 3, pp. 481 - 489. doi: 10.1109/JPROC.2007.913515; Biomedical photoacoustic imaging / PaulBeard // Interface Focus.-2011, Vol. 1, pp. 602-631, doi:10.1098/rsfs.2011.0028), кроме того, отсутствует возможность подачи просветляющих агентов непосредственно в область исследования (которые можно комбинировать с иммерсионной жидкостью), что может существенно снизить глубину сканирования. Нанесение слоя иммерсионной жидкости на область сканирования требует от иммерсионной жидкости специальных свойств, особенно при работе под углом к горизонту, исследовании тканей у животных, а также при исследовании значительных участков поверхности.

В предложенном изобретении система фокусировки лазерного излучения проста в изготовлении и позволяет подстраивать фокусировку лазерного излучения в процессе исследований (изменять глубину зондирования). Иммерсионную жидкость в предложенном устройстве подают через цилиндрический канал в звукопроводе оптоакустического объектива (путем использования специального переходного устройства), что позволяет применять объектив при исследованиях образцов под углом к горизонту, образцов со сложной геометрией и позволяет локально исследовать области на теле животных без применения ванны с иммерсионной жидкостью.

Известно портативное устройство для фотоакустической микроскопии, которое применяется для визуализации биологических тканей (патент US 2011/0201914 A1). Устройство содержит фотоакустический сенсор (оптоакустический объектив), который состоит из цельного или многокомпонентного пьезоэлектрического преобразователя, выполненного в виде акустической линзы, многокомпонентной и сложной в изготовлении системы фокусировки оптического излучения (включает высокоточную систему линз, фильтр, отражающую перегородку, интегрирующую камеру, диафрагму), электровывод, цилиндрическую корпус-балку. Оптоакустический объектив находится в герметической ванне (контейнере), заполненной иммерсионной жидкостью. Основа герметической ванны-контейнера изготовлена из оптически и акустически прозрачной мембраны. Акустический контакт между мембраной и исследуемым образцом достигается путем погружения стороны контейнера с мембраной в иммерсионную жидкость.

Недостатками данного оптоакустического объектива являются:

1) Сложная конструкция объектива и, как следствие, сложность его изготовления (в частности, необходимость изготовления высокоточной и согласованной системы из линз, зеркал, призм или их сочетания для обеспечения фокусировки лазерного излучения).

2) Отсутствие системы подстраиваемой фокусировки лазерного излучения в процессе исследований.

3) Необходимость применения герметической ванны-контейнера с иммерсионной жидкостью и погружения ее в иммерсионную жидкость для акустического контакта между образцом и ультразвуковым датчиком. Это обстоятельство ограничивает область применения рассматриваемого устройства при исследованиях образцов под углом к горизонту и удобство использования. Например, для исследования биологических тканей у животных (мышей) необходимо погружение исследуемой области в ванну, что требует анестезии животного. Кроме того, если рассматриваемая область находится в районе дыхательных путей, то дополнительно требуется специальная система подведения воздуха (статьи: «Noninvasive laser-induced photoacoustic tomography for structural and functional invivo imaging of the brain / Xueding Wang, Yongjiang Pang, Geng Ku, Xueyi Xie, George Stoica&Lihong V Wang // Nature Biotechnology. - 2003, Vol. 21, pp. 803-806; Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography / Meng-Lin Li, Jung-Taek Oh, Xie X., Ku. G., Wei Wang, Chun Li, Lungu. G., Stoica. G., Wang, L.V. // Proceedings of the IEEE.-2008, Vol. 96, Is. 3, pp. 481 - 489. doi: 10.1109/JPROC.2007.913515; Biomedical photoacoustic imaging / Paul Beard // Interface Focus.-2011, Vol. 1, pp. 602-631, doi:10.1098/rsfs.2011.0028).

Известно также устройство для конфокальной фотоакустической микроскопии (патент US 8,454,512 B2). Устройство содержит оптоакустическую ячейку (оптоакустический объектив), которая состоит из пьезоэлектрического преобразователя, многокомпонентной системы фокусировки лазерного излучения (включает высокоточную систему линз и призм или зеркал, микроотверстие, фотодетектор) в различных вариациях, звукопровода, акустической линзы. Роль звукопровода выполняет ромбоидальная призма со слоем силиконового масла на одной из граней для отражения акустического сигнала.

Недостатками такого исполнения оптоакустического объектива являются:

1) Сложность конструкции оптоакустического объектива.

2) Сложность изготовления оптоакустического объектива, в частности

необходимость изготовления высокоточной и согласованной системы из линз, зеркал, призм или их сочетания для обеспечения фокусировки лазерного излучения.

3) Наличие переотражений акустического сигнала в звукопроводе.

4) Применение ванны с иммерсионной жидкостью для акустического контакта между поверхностью образца и ультразвуковым датчиком ограничивает область применения рассматриваемого устройства при исследованиях образцов под углом к горизонту. Ванна с иммерсионной жидкостью ограничивает удобство использования. Например, для исследования биологических тканей у животных (мышей) необходимо погружение исследуемой области в ванну, что требует анестезии животного. Если рассматриваемая область находится в районе дыхательных путей, то и специальной системы подведения воздуха.

Наиболее близким к заявляемому изобретению является оптоакустический объектив, принятый за прототип (патент US 5,381,695). Устройство содержит: цилиндрический звукопровод, на одном торце которого выполнена акустическая линза, на поверхности которой или на другом торце звукопровода расположен акустический пьезопреобразователь. В центре звукопровода выполнен цилиндрический канал, в котором закреплено оптоволокно для подвода света в область исследования. На конце оптоволокна в центре акустической линзы закреплена оптическая линза, позволяющая фокусировать световое излучение на желаемом расстоянии.

Недостатками этого устройства являются:

1) Необходимость использования ванны с иммерсионной жидкостью или применения специальных уплотнений во избежание утечки иммерсионной жидкости. Это ограничивает сферу применения данного решения.

2) Невозможность перестройки глубины зондирования и области фокусировки лазерного излучения во время эксперимента.

Техническим результатом, на достижение которого направлено изобретение, являЕтся:

1) Расширение области применения за счет обеспечения подачи иммерсионной жидкости непосредственно к области сканирования через канал в звукопроводе оптоакустического объектива, что позволяет исследовать образцы под углом к горизонту, образцы со сложной геометрией, а также упрощает процесс исследования биологических тканей у животных (отпадает необходимость погружения исследуемой области животного в ванну и подведения специальной системы подачи воздуха).

2) Упрощение конструкции, так как отпадает необходимость в применении ванны с иммерсионной жидкостью, уплотнителей.

3) Расширение функциональных возможностей, что связано с возможностью изменять глубину зондирования и область фокусировки лазерного излучения во время исследования за счет простой системы фокусировки лазерного излучения (изменения расстояния между оптоволокном и оптической линзой), а также за счет изменения каустики акустической линзы посредством изменения фокусного расстояния коаксиального многоэлементного преобразователя.

Указанный технический результат достигается тем, что оптоакустический объектив, содержащий звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим каналом в центральной части, оптоволокно, размещенное в цилиндрическом канале, согласно решению содержит переходное устройство, снабженное боковым штуцером для введения иммерсионной жидкости, один конец переходного устройства закреплен в канале со стороны пьезоэлектрического преобразователя, а второй конец переходного устройства снабжен уплотняющей втулкой для герметизации оптоволокна, причем диаметр канала и внутренний диаметр переходного устройства превышают диаметр оптоволокна на величину, обеспечивающую прохождение иммерсионной жидкости от штуцера к акустической линзе. В центре сферической акустической линзы закреплена оптическая линза, при этом между линзами выполнен зазор для подачи иммерсионной жидкости из цилиндрического канала. Кольцевой пьезоэлектрический преобразователь представляет собой коаксиальную многоэлементную структуру, элементы которой предназначены для соединения с приемником или источником электрического сигнала через отдельные фазовращатели. К звукопроводу прикреплено микроперемещающее устройство, к подвижной части которого прикреплено оптическое волокно, а втулка выполнена с возможностью продольного перемещения оптоволокна в ней.

Изобретение поясняется чертежами, где на фиг. 1 представлено схематическое изображение оптоакустического объектива; на фиг. 2 - схематическое изображение оптоакустического объектива со стороны акустической линзы; фиг. 3 - схематическое изображение переходного устройства для одновременного введения оптоволокна и подведения иммерсионной жидкости; фиг. 4 - схематически изображено изменение фокусного расстояния оптической линзы при смещении положения оптоволокна в канале оптоакустического объектива;

Позициями на чертежах обозначены:

1 - звукопровод;

2 - канал;

3 - иммерсионная жидкость;

4 - оптоволокно;

5 - источник иммерсионной жидкости;

6 - переходное устройство;

7 - корпус переходного устройства с боковым штуцером;

8 - уплотняющая втулка;

9 - пластина ниобата лития;

10 - металлические электроды;

11 - оптическая линза;

12 - крепление оптической линзы;

13 - исследуемая поверхность;

14 - микроперемещающее устройство.

Оптоакустический объектив (фиг. 1) содержит звукопровод 1 (например, из диэлектрических монокристаллов: кварца, сплавов магния, иттрийалюминиевого граната, сапфира), представляющий собой, например, цилиндр, параллелепипед или конус. В центральной части звукопровода, вдоль его оси симметрии, выполнен цилиндрический канал 2, предназначенный для подведения иммерсионной жидкости 3 в область исследования. Также в канале размещено оптоволокно 4 для передачи оптического излучения. Диаметр цилиндрического канала в звукопроводе превышает диаметр оптоволокна на величину, обеспечивающую прохождение иммерсионной жидкости. Кроме того, зазор между оптоволокном и поверхностью цилиндрического канала в звукопроводе выполнен с возможностью соединения с источником иммерсионной жидкости 5 посредством применения переходного устройства 6. Переходное устройство (фиг. 3) снабжено боковым штуцером 7 для введения иммерсионной жидкости 3, один конец переходного устройства закреплен в цилиндрическом канале звукопровода, а второй конец переходного устройства снабжен уплотняющей втулкой 8 для герметизации оптоволокна 4, причем внутренний диаметр переходного устройства превышает диаметр оптоволокна на величину, обеспечивающую прохождение иммерсионной жидкости от бокового штуцера в цилиндрический канал 2 звукопровода. В качестве иммерсионной жидкости может применятся, например, вода, гель для ультразвукового исследования, касторовое масло и др.

Одна из торцевых поверхностей звукопровода выполнена плоской нормально оси симметрии звукопровода. На этой поверхности расположен кольцевой пьезоэлектрический преобразователь и переходное устройство 6. Кольцевой пьезоэлектрический преобразователь может быть изготовлен из пластины сегнетоэлектрика или пьезоэлектрика, расположенной между металлическими электродами, например пластина 9 (например из ниобата лития (LiNbO3)), расположенная между двумя металлическими (например серебряных) электродами 10. Также, пьезоэлектрический преобразователь может представлять собой коаксиальную многоэлементную структуру, элементы которой соединены с источником электрического сигнала через отдельные фазовращатели.

Противоположный торец объектива (фиг. 2) выполнен в виде акустической (например, сферической) линзы, в центре которой находится отверстие цилиндрического канала (ось отверстия совпадает с осью симметрии кольцевого акустического преобразователя и акустической линзы) и оптическая линза 11 сферической симметрии (изготовлена из природных или синтетических материалов, прозрачных в соответствующем диапазоне оптического излучения, например из кварца). Между линзами предусмотрен зазор для подачи иммерсионной жидкости из цилиндрического канала. Оптическая линза крепится на звукопроводе, (например, в трех местах под углом 120°) 12 посредством применения клея или оправки. Изменение фокусировки оптического излучения на исследуемую поверхность 13 производится путем изменения расстояния между торцевой поверхностью оптоволокна 4 и оптической линзой 11. Световое излучение, выходящее из оптоволокна, имеет сферический фронт. В этой связи область фокусировки за оптической линзой зависит от расстояния между выходным торцом оптоволокна и оптической линзой. Положение оптоволокна изменяется посредством его перемещения в цилиндрическом канале звукопровода 2 при помощи микроперемещающего устройства 14, которое жестко связано с звукопроводом.

Существенные признаки заявляемого изобретения:

1. Первым существенным признаком изобретения является то, что cо стороны плоского торца звукопровода расположено переходное устройство, имеющее на торцевом конце отверстие для введения оптоволокна и боковой штуцер для введения иммерсионной жидкости, причем диаметр канала и внутренний диаметр переходного устройства превышают диаметр оптоволокна на величину, обеспечивающую прохождение иммерсионной жидкости от штуцера к акустической линзе.

2. Вторым отличительным признаком является то, что в центре сферической акустической линзы закреплена оптическая линза, при этом между линзами выполнен зазор для подачи иммерсионной жидкости из цилиндрического канала.

3. Третьим отличительным признаком является то, что пьезоэлектрический преобразователь представляет собой коаксиальную многоэлементную (не менее двух колец) структуру, элементы которой соединены с приемником/источником электрического сигнала через отдельные фазовращатели. При этом коаксиально расположенные элементы преобразователя могут представлять собой обособленные кольцевые преобразователи, каждый из которых имеет собственный подслой (нижний электрод), надслой (верхний электрод) и пьезослой, расположенный между двумя электродами. В такой реализации каждый из элементов соединен с генератором через собственный фазовращатель посредством двухпроводной линии. В другой реализации все элементы имеют общий нижний электрод (подслой) и общий пьезослой, а каждый элемент имеет раздельные верхние электроды (надслои), так что все элементы соединены с генератором одним общим электродом (например, подслоем), а каждый элемент соединен с генератором через отдельный фазоваращатель посредством второго из подводящих энергию электродов (например, надслоя). Кроме того, отношения внешнего и внутреннего диаметров каждого кольца, а также зазора между кольцами, рассчитываются исходя из обеспечения: 1) условия фокусировки в заданной области исследуемого образца; 2) максимального отношения амплитуд нулевого и первого лепестков в диаграмме направленности преобразователя.

4. Четвертым отличительным признаком является то, что к звукопроводу прикреплено микроперемещающее устройство, к подвижной части которого прикреплено оптическое волокно, а втулка переходного устройства выполнена с возможностью продольного перемещения оптоволокна в ней. Наличие микроперемещающего устройства позволяет производить настройку «на фокус» оптического излучения, подводимого с помощью оптического волокна.

Оптоакустический объектив работает следующим образом.

В область фокуса оптоакустического объектива помещают исследуемый объект. Для обеспечения акустического контакта между образцом и оптоакустическим объективом подают иммерсионную жидкость, через переходное устройство и цилиндрический канал в оптоакустическом объективе. Через входной конец оптоволокна подают импульсное лазерное излучение. Лазерный свет, проходя по оптоволокну, падает на оптическую линзу, которая фокусирует излучение на исследуемый объект. Изменение фокусировки излучения (фиг. 4) достигается изменением расстояния между выходным концом оптоволокна, где оптическое излучение имеет определенную расходимость, и оптической линзой. Энергия лазерного излучения поглощается материалом образца (неоднородностью в исследуемом образце), вызывая при этом локальное нагревание и расширение образца (термоупругий эффект) с длительностью, пропорциональной длительности импульса лазерного излучения. Это локальное расширение возбуждает, в свою очередь, импульсную акустическую волну. Акустический импульс распространяется в исследуемом объекте и отражается от границ раздела сред. Сферические акустические волны, распространяясь через иммерсионную жидкость, попадают на поверхность акустической линзы, где преобразуются в плоские волны, распространяющиеся по звукопроводу до пьезоэлектрического преобразователя, который трансформирует акустический сигнал в электромагнитный. Объектив перемещается по двум координатам в плоскости, перпендикулярной направлению распространения лазерного пучка с помощью системы сканирования.

После обработки принятого акустического сигнала в блоке визуализации получаем изображение исследуемого объекта.

Настоящее изобретение поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата. Оптоакустический объектив содержит кварцевый звукопровод, представляющий собой цилиндр, высотой 20 мм и диаметром 10 мм. В звукопроводе коаксиально выполнен цилиндрический канал диаметром ~0,8 мм. В канале размещено оптоволокно с диаметром центральной кварцевой жилы 50 мкм. Одна из торцевых поверхностей звукопровода выполнена плоской нормально оси звукопровода. На этой поверхности расположен кольцевой пьезоэлектрический преобразователь, представляющий собой пластину из ниобата лития (LiNbO3), размещенную между двумя серебряными электродами, один из которых служит связующим слоем между звукопроводом и пьезоэлектриком. Противоположный торец объектива выполнен в виде сферической акустической линзы с радиусом 11 мм. В центре акустической линзы находится отверстие цилиндрического канала и оптическая линза из кварца в виде сферы с диаметром ~0,6 мм. Зазор между линзами составляет ~0,2 мм. Оптическая линза закреплена на звукопроводе посредством применения клея. Иммерсионную жидкость (воду) подают в зазор между оптоволокном и стенкой канала в звукопроводе через переходное устройство, имеющее на торцевом конце уплотняющую втулку для введения оптоволокна и боковой штуцер для введения иммерсионной жидкости.

Предлагаемое конструктивное решение оптоакустического объектива не исключает использование оптоакустического объектива без оптической линзы или только с подачей иммерсионной жидкости.


ОПТОАКУСТИЧЕСКИЙ ОБЪЕКТИВ
ОПТОАКУСТИЧЕСКИЙ ОБЪЕКТИВ
ОПТОАКУСТИЧЕСКИЙ ОБЪЕКТИВ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 94.
05.02.2020
№220.017.fdd2

Способ получения наночастиц аспарагината хитозана

Изобретение относится к области химии полимеров и может быть использовано для получения полимерных наночастиц из аспарагината хитозана. Способ получения производных хитозана предусматривает смешивание хитозана с кислотой и получение целевого продукта. При этом используют порошок...
Тип: Изобретение
Номер охранного документа: 0002713138
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff3f

Способ диагностики состояния сосудов по форме пульсовой волны

Изобретение относится к медицине и может быть использовано для измерения и анализа состояния артериальной сосудистой системы по форме пульсовой волны, регистрируемой осциллометрическим методом, и проведения скрининговой диагностики состояния артериальной сосудистой системы человека. Проводят...
Тип: Изобретение
Номер охранного документа: 0002713157
Дата охранного документа: 04.02.2020
23.02.2020
№220.018.04b6

Средство, обладающее цитотоксической активностью

Изобретение относится к области органической химии и фармации. Предложено применение 2-(4-карбоксибензилиден)-3,4-дигидронафтален-1(2Н)-она в качестве средства, обладающего цитотоксической активностью. Технический результат: соединение подавляло метаболическую активность клеточных линий почки...
Тип: Изобретение
Номер охранного документа: 0002714932
Дата охранного документа: 21.02.2020
07.03.2020
№220.018.0a75

Способ количественного определения новокаина

Изобретение относится к аналитической химии, в частности к количественному определению новокаина. Предложен способ количественного определения новокаина, включающий обработку анализируемой пробы растворами органического реагента и додецилсульфата натрия, добавление цитратного буферного...
Тип: Изобретение
Номер охранного документа: 0002715997
Дата охранного документа: 05.03.2020
15.03.2020
№220.018.0c62

Способ определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрической структуры

Изобретение относится к области контрольно-измерительной техники и предназначено для одновременного определения относительной диэлектрической проницаемости и тангенса угла диэлектрических потерь диэлектрических структур в сверхвысокочастотном диапазоне, и может найти применение для...
Тип: Изобретение
Номер охранного документа: 0002716600
Дата охранного документа: 13.03.2020
21.03.2020
№220.018.0e36

Направленный 3d ответвитель на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного ответвителя мощности. Техническая проблема изобретения заключается в создании 3D ответвителя СВЧ-мощности, обеспечивающего возможность...
Тип: Изобретение
Номер охранного документа: 0002717257
Дата охранного документа: 19.03.2020
15.04.2020
№220.018.14bf

Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым...
Тип: Изобретение
Номер охранного документа: 0002718773
Дата охранного документа: 14.04.2020
06.07.2020
№220.018.3019

Способ синтеза апконверсионных частиц nayf:er,yb

Изобретение может быть использовано в биофизике, медицинской диагностике и терапии для преобразования инфракрасного излучения в видимое. Готовят водные растворы гексагидратов хлорида иттрия, хлорида иттербия, хлорида эрбия, а также цитрата натрия и фторида натрия. Полученные растворы...
Тип: Изобретение
Номер охранного документа: 0002725581
Дата охранного документа: 02.07.2020
07.07.2020
№220.018.3064

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к медицине. Способ бесконтактного измерения внутриглазного давления включает воздействие на глаз воздушным импульсом и освещение оптическим излучением, преобразование отражённого от глаза оптического излучения в напряжение, регистрацию зависимости напряжения от времени,...
Тип: Изобретение
Номер охранного документа: 0002725854
Дата охранного документа: 06.07.2020
09.07.2020
№220.018.30bc

Способ детектирования терагерцовых электромагнитных волн

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии...
Тип: Изобретение
Номер охранного документа: 0002725899
Дата охранного документа: 07.07.2020
Показаны записи 41-43 из 43.
19.12.2019
№219.017.eebb

Датчик изгибающего момента для вихревых расходомеров

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности - к датчикам изгибающего момента, используемым и предназначенным для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. В датчике изгибающего момента для вихревых...
Тип: Изобретение
Номер охранного документа: 0002709430
Дата охранного документа: 17.12.2019
15.05.2023
№223.018.57ad

Датчик изгибающего момента высокотемпературный для вихревых расходомеров

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности – к датчикам изгибающего момента, для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. Отличительная особенность данного датчика для вихревых расходомеров заключается...
Тип: Изобретение
Номер охранного документа: 0002766105
Дата охранного документа: 07.02.2022
15.05.2023
№223.018.5abc

Датчик изгибающего момента для высокотемпературных вихревых расходомеров

Изобретение относится к высокотемпературным датчикам изгибающего момента в вихревых расходомерах, для регистрации частоты вихрей за телом обтекания, пропорциональной скорости потока жидкости, пара или газа. Отличительной особенностью датчика согласно изобретению является то,что...
Тип: Изобретение
Номер охранного документа: 0002765898
Дата охранного документа: 04.02.2022
+ добавить свой РИД