×
13.01.2017
217.015.8544

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения. Сущность: осуществляют циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N. Используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен. Технический результат: определение предела выносливости металлического материала при симметричных и любых асимметричных циклических нагрузках, включая область сжатия. 1 табл., 1 ил.

Изобретение относится к области исследования прочностных свойств твердых материалов и может быть использовано для определения усталостной прочности конструкционных материалов, работающих в условиях циклического нагружения.

Для расчета ресурса конструкций, определения срока их эксплуатации, сравнения и выбора материалов и технологий их производства на этапе конструирования, а также для установления периодичности неразрушающего контроля конструкций необходимо определять предел выносливости материалов, характеризующий способность материала сопротивляться длительным циклическим нагрузкам. Предел выносливости в условиях многоцикловой усталости σ определяется по ГОСТ 25.502-79 как максимальное напряжение в цикле нагружения с коэффициентом асимметрии R, при котором не происходит усталостного разрушения до базы испытаний N циклов. Коэффициент асимметрии цикла нагружения определяется отношением минимального значения напряжения в цикле нагружения к максимальному: R=σminmax.

Для повышения предела выносливости конструкционных материалов применяют упрочняющую поверхностную обработку, например обработку стальными шариками, химико-термическую обработку и другие виды упрочнения поверхности. В результате поверхностного упрочнения возрастает твердость поверхностных слоев и создаются сжимающие напряжения, которые частично компенсируют напряжения растяжения, возникающие в процессе циклического нагружения. Для элементов конструкции, работающих в условиях циклического сжатия, сжимающие напряжения упрочненной поверхности накладываются на сжимающие циклические напряжения от внешней нагрузки и могут приводить к снижению усталостной прочности. В этой связи исследование многоцикловой усталости высокопрочных материалов в условиях преимущественного сжатия имеет первостепенное значение.

Известные способы определения предела выносливости, описанные в стандарте ГОСТ 25.502-79 (прототип), не предусматривают усталостных испытаний металлических конструкционных материалов в области преимущественного сжатия. Определение предела выносливости в условиях осевого сжатия на образцах, изготовленных согласно требованиям ГОСТ 25.502-79, приводит к потере устойчивости образца, в результате чего происходит неравномерное упругопластическое деформирование или разрушение образца. Такие результаты признаются недействительными.

Наиболее близким к предложенному является способ определения предела выносливости металлических материалов в условиях изгиба в одной плоскости, включающий циклическое консольное или четырехточечное нагружение образцов. Используемые в таких испытаниях по ГОСТ 25.502-79 образцы (тип I, V, VI) имеют сечение рабочей зоны в форме круга или прямоугольника, что не позволяет реализовать цикл нагружения в области преимущественного сжатия: при симметричном и асимметричном цикле нагружения в условиях изгиба в одной плоскости сжимающие напряжения с одной стороны образцов всегда равны растягивающим напряжениям с противоположной стороны.

В связи с тем, что предел выносливости конструкционных материалов при растяжении меньше предела выносливости при сжатии (Орлов М.Р., Оспенникова О.Г., Наприенко С.А., Морозова Л.В., «Исследование усталостного разрушения конических шестерен редуктора центрального привода газотурбинного двигателя, изготовленных из стали 20Х3МВФ», Деформация и разрушение материалов, 2014 г., №7, с. 18-26), усталостная трещина всегда начинает развиваться со стороны действия растягивающих напряжений, то есть в результате испытаний по ГОСТ 25.502-79 получают значения предела выносливости материала в условиях симметричного цикла нагружения (R=-1) и асимметричного цикла нагружения с преимущественным растяжением (R=0; 0,5 и др.).

Техническая задача, на решение которой направлено изобретение, - определение предела выносливости металлического материала при симметричных и любых асимметричных циклических нагрузках, включая область сжатия.

Предлагаемый способ определения предела выносливости металлических материалов позволяет при стандартной процедуре нагружения образца в условиях изгиба в одной плоскости реализовать условия преимущественно растяжения и преимущественно сжатия образца за счет изменения формы образца.

Способ определения предела выносливости σRN металлического материала включает циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N и отличается тем, что используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен.

Асимметрия момента сопротивления рабочего сечения обеспечивает необходимую концентрацию напряжений сжатия в зоне концентратора, величина которых существенно превосходит величину напряжений растяжения на противоположной стороне образца, и этим предопределяет зарождение и развитие усталостной трещины не в зоне действия напряжений растяжения, а в зоне действия максимальных напряжений сжатия. Таким образом, при симметричном (R=-1) и асимметричных циклах нагружения образцов с асимметричным моментом сопротивления рабочего сечения образца определяют предел выносливости конструкционных материалов, в том числе и на образцах с упрочненной поверхностью, в условиях как преимущественного растяжения, так и преимущественного сжатия.

Величина радиуса концентратора напряжений r в пределах значений от 1,0 до 40 мм определяется требованиями подобия испытуемого образца элементу детали или конструкции. Требования к размеру образца и параметры шероховатости рабочей части образцов соответствуют ГОСТ 25.502-79.

Для реализации предлагаемого способа определения предела выносливости были использованы образцы из стали 20ХЗМВФ после серийной термической обработки по режиму: закалка в масло после аустенитизации при температуре 910°С в течение 30 минут и отпуск при температуре 300°С в течение 3 часов. Для усталостных испытаний были изготовлены образцы с клиновидным сечением рабочей зоны по чертежу, приведенному на фигуре 1.

В соответствии с чертежом образца заготовкой для получения профильной поверхности рабочей зоны является шлифованный цилиндр длиной 55 мм и диаметром 10 мм с шероховатостью поверхности не хуже Ra 0,32 мкм. В рабочей зоне заготовки выполняются две выборки радиусом 40 мм, расположенные под углом 60° друг относительно друга. В центральной зоне образца согласно чертежу выполняется концентратор радиусом r=2,5 мм. Шероховатость поверхностей выборок и концентратора должна быть не хуже Ra 0,32 мкм. Плоскости вращения шлифовального круга при обработке поверхностей выборок и концентратора r должны быть перпендикулярны оси образца.

Усталостные испытания образцов стали 20ХЗМВФ с целью определения предела выносливости σRN осуществляют при высокочастотном циклическом нагружении на базе N=106 циклов нагружения в условиях продольного консольного изгиба образца в вертикальной плоскости с контролем изгибающего момента М. Образцы устанавливают в захваты резонансной испытательной установки CRACKTRONIC таким образом, чтобы продольная плоскость симметрии клиновидной рабочей зоны была совмещена с вертикальной плоскостью изгиба.

Испытания проводят методом ступенчатого увеличения размаха изгибающего момента ΔM=Mmax-Mmin на величину 2 Н·м после отработки образца N=106 циклов на предыдущем уровне циклического нагружения. В качестве начального уровня нагружения для всех значений R был выбран размах изгибающего момента ΔΜ=20 Н·м.

В процессе испытаний образцов регистрируют амплитудные значения циклической нагрузки Mmax и Mmin. Амплитудные значения напряжений σmax и σmin в зоне концентратора вычисляют по известной формуле σ=M·Wz, где Wz - момент сопротивления рабочего сечения образца в зоне концентратора, рассчитанный методом конечных элементов с помощью программного комплекса ANSYS R15.0.

Предел выносливости σRN образцов стали 20Х3МВФ определяют как максимальное по модулю значение напряжения в цикле нагружения с коэффициентом асимметрии R, при котором не происходит усталостного разрушения образца при достижении N циклов нагружения. Одновременно регистрируют максимальное значение размаха напряжений в цикле нагружения: Δσ=σmaxmin.

Предложенным способом были определены предел выносливости σRN и предельная величина размаха напряжений в цикле нагружения Δσ стали 20Х3МВФ в диапазоне значений асимметрии цикла нагружения от преимущественного растяжения (R=0,5) до преимущественного сжатия (R=2,0). Результаты испытаний образцов 1а-7а с клиновидным сечением рабочей зоны в режимах 1-7, отличающихся коэффициентом асимметрии цикла нагружения, приведены в таблице.

Для оценки предела выносливости, определенного предложенным способом в области преимущественного растяжения, были испытаны в условиях изгиба в одной плоскости образцы стали 20Х3МВФ, изготовленные согласно ГОСТ 25.502-79, тип I, с диаметром рабочей зоны 5 мм. Результаты испытаний образцов 1б-4б по ГОСТ 25.502-79 для различных значений коэффициента асимметрии цикла нагружения также представлены в таблице. Очевидно, что значения предела выносливости в области преимущественного растяжения, определенные на клиновидных образцах и на стандартных образцах по ГОСТ 25.502-79, тип I, практически совпадают. На стандартных образцах по ГОСТ 25.502-79, тип I определить предел выносливости в области преимущественного сжатия (R=±∞; R=3,0; R=2,0) не представляется возможным в связи с усталостным разрушением этих образцов в зоне преимущественного растяжения.

Результаты усталостных испытаний образцов стали 20Х3МВФ по предлагаемому способу и ГОСТ 25.502-79.

На основании полученных данных можно заключить, что предлагаемый способ позволяет определить предел выносливости металлического материала в области преимущественного растяжения и преимущественного сжатия, причем в области преимущественного растяжения значения предела выносливости совпадают в пределах ошибки эксперимента со значениями, определенными по ГОСТ 25.502-79 на образцах типа I.

Способ определения предела выносливости σ металлического материала, включающий циклическое нагружение образца в условиях консольного или четырехточечного изгиба в одной плоскости с заданным коэффициентом асимметрии цикла нагружения R на базе заданного количества циклов нагружения N, отличающийся тем, что используют образец металлического материала, который имеет клиновидную форму рабочего сечения, с концентратором напряжений цилиндрической формы, ось которого ориентирована перпендикулярно плоскости изгиба, причем момент сопротивления рабочего сечения образца асимметричен.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 291-300 из 369.
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
Показаны записи 291-300 из 335.
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
+ добавить свой РИД