×
13.01.2017
217.015.8405

Результат интеллектуальной деятельности: АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность изобретения заключается в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности аэродинамической модели, предназначенной для измерения распределения давления по поверхности, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление, воспринимаемое дренажными отверстиями, подается в каналы, которые внутри оболочки проложены к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов. Технический результат заключается в повышении точности и достоверности измерений. 2 ил.

Предлагаемое изобретение относится к измерительной технике, а именно к аэродинамическим моделям для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя.

В задаче определения аэродинамических характеристик модели летательного аппарата (ЛА) важное место занимает исследование распределения давления на обтекаемой поверхности. Обычно такое определение распределения давления по поверхности обеспечивается приемными дренажными отверстиями, размещенными на обтекаемой поверхности модели, а к этим отверстиям с внутренней стороны поверхности подводятся дренажные трубки, идущие к манометрам, которые фиксируют значения измеряемых величин давления.

В качестве ближайшего аналога принята конструкция аэродинамической модели, схемы работы измерительных устройств которой приведены в [1] на стр. 167, 220, 260 ([1] - книга авторов Краснова Н.Ф., Кошевого В.Н., Данилова А.Н. и др. Прикладная аэродинамика. М.: Высшая школа, 1974).

Согласно приведенным схемам поверхность модели дренируется и к дренажным отверстиям подсоединяются и вводятся внутрь полого корпуса модели соединительные дренажные трубки для замера давлений по поверхности модели. Дренажные трубки подходят к измерительному устройству, например к батарейному манометру [1, стр. 260], входящему в систему измерений распределения давления.

Эта задача определения распределения давления по поверхности модели становится особо сложной, если на модели ЛА имитируется работа кормового ракетного двигателя, струя которого моделируется подводимым через боковую державку сжатым воздухом (см. фиг. 1).

Весь внутренний объем модели в этом случае занят воздушной полостью, обеспечивающей необходимый расход воздуха через сопло модельного кормового двигателя, и размещать в этом внутреннем объеме большое количество подводящих дренажных трубок от манометров к дренажным отверстиям, выполненным на обтекаемой поверхности модели, недопустимо из-за сокращения проходного сечения воздушной полости и, как следствие, из-за необеспечения требуемого расхода воздуха для имитации струи кормового двигателя.

На стр. 18-19 [1] отмечено, что "при исследовании обтекания тонких тел (тонкое крыло или корпус) бывает практически невозможно расположить дренажные отверстия на тех участках поверхности, к которым нельзя провести дренажные трубки из-за малых поперечных сечений тела".

На стр. 64 [1] приведены требования к размерам дренажных отверстий: "диаметр отверстия 0.3÷0.5 мм, т.к. излишне большой размер вызывает дополнительные возмущения в потоке, что приводит к искажению измеряемого давления".

В случае когда внутренние дренажные трубки невозможно разместить внутри модели из-за малых поперечных размеров модели, в практике изготовления аэродинамических моделей возможна укладка дренажных трубок в канавки, выполненные на наружной поверхности модели (см. [2], стр. 552, книга авторов Горлина С.М. и Слезингера И.И. Аэромеханические измерения, методы и приборы. М.: Наука, 1964) (см. фиг. 1).

Практика использования размещения дренажных трубок в канавки на поверхности модели имеет существенные недостатки: после укладки дренажных трубок (изготавливаемых по необходимости из легко деформируемого материала) в криволинейные канавки необходимо канавки заполнить шпаклевочным материалом или припоем заподлицо с поверхностью с целью обеспечения высоких требований по чистоте обтекаемой поверхности (чего практически не удается достичь, поскольку материал заполнителя отличается по своим характеристикам от материала поверхности модели и искажается структура пограничного слоя). Да и обеспечить необходимые требования к дренажным отверстиям в стенках податливых дренажных трубок, уложенных в канавки, также практически невозможно из-за высоких требований к размерам дренажных отверстий: отношение глубины сверления дренажа h к диаметру дренажного отверстия D должно быть в пределах 3÷5, т.е. h/D=3÷5, дренажные отверстия сверлятся перпендикулярно к обтекаемой поверхности модели, должны быть калиброванными (без заусенец и зазубрин), что тяжело выполнить в стенке дренажной трубки из податливого материала, причем трубка уложена в канавку, заделанную также податливым при сверлении дренажных отверстий материалом, что затрудняет выполнение строгих требований к отверстиям.

Проложенные по поверхности модели канавки, обеспечивая исследование распределения давления вдоль поверхности модели, должны прокладываться по винтовым траекториям, поскольку число дренажных отверстий составляет обычно значение 10-20, и эти канавки надо свести к боковой державке (в одно место, т.к. торец модели занят модельным двигателем). Таким образом, вся внешняя поверхность модели будет изрезана проложенными криволинейными и заделанными канавками, искажающими чистоту и однородность обтекаемой поверхности в местах замера давления.

Итак, в рассмотренных известных аэродинамических моделях ЛА для определения влияния струи кормового ракетного двигателя на распределение давления по поверхности ЛА выявлены следующие недостатки: при наличии тонкостенного корпуса модели невозможно проложить дренажные трубки к точкам замера давления и выполнить дренажные отверстия, обеспечивающие точность замера давления.

С целью устранения указанных недостатков предлагается новое техническое решение для замера давления на поверхности модели.

Технической задачей данного предложения является исследование распределения давления по поверхности тонкостенной аэродинамической модели в аэродинамических испытаниях с имитацией струй кормового двигателя.

Данная техническая задача решается тем, что аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя, включающая в себя закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки, проложенные в боковой державке и соединенные с устройством регистрации давления, систему подачи сжатого воздуха к модельному соплу, состоящую из баллона со сжатым воздухом, воздуховодов, проложенных в боковой державке, и внутренней полости модели, отличается от прототипа тем, что корпус модели выполнен в виде соосно размещенных одна в другой оболочек, причем на внешней поверхности внутренней оболочки выполнены криволинейные каналы сечением не более толщины оболочки, которые после соединения оболочек становятся внутрикорпусными и соединяют каждое дренажное отверстие с соответствующей дренажной трубкой в боковой державке.

Чертеж, иллюстрирующий техническое предложение, приведен на фиг. 2.

Аэродинамическая модель ЛА для исследования распределения давления по ее поверхности в аэродинамических испытаниях с имитацией струи кормового ракетного двигателя содержит модель 1 с тонкостенным корпусом и модельным соплом 2, закрепленную на боковой державке 3, выполненной в виде пилона, систему измерения давления, состоящую из приемных дренажных отверстий 4, расположенных на наружной поверхности модели 1 и сообщающихся с каналами 5, выполненными внутри тонкостенного корпуса, в свою очередь соединенными с выводными дренажными трубками 6, присоединяемыми к регистрирующему манометру 7 и размещаемыми в боковой державке 3, систему подачи сжатого воздуха к модельному соплу 2, состоящую из баллона со сжатым воздухом 8, воздуховодов 9, проложенных в боковой державке 3 и внутренней полости модели 10, и обеспечивающую расходную характеристику модельного двигателя. Модель в сборе устанавливается в рабочей части аэродинамической трубы на монтажной плите 11, и к ней с помощью соединительных дренажных трубок 6 присоединяется групповой регистрирующий манометр 7, а к системе подачи сжатого воздуха к модельному соплу присоединяется баллон с воздухом высокого давления 8.

Суть изобретения состоит в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности модели, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление через дренажные отверстия подается в подведенные каналы, которые выходят к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов (см. фиг. 2).

Каналы, выполненные в корпусе металлической оболочки, имеют малые поперечные размеры (диаметр ~1 мм), т.е. значительно меньше поперечных размеров дренажных трубок, имеющих внешний диаметр ~2 мм, при этом для дренажных трубок нужно дополнительное пространство для их размещения (например, канавки в известных устройствах имеют поперечные размеры более 2 мм).

Технологически каналы внутри тонкостенного корпуса модели выполняются следующим образом.

Корпус модели выполняется из соосно размещенных одна в другой внешней и внутренней оболочек толщиной порядка 1,5-2,0 мм. На поверхности внутренней оболочки фрезеруются криволинейные каналы сечением 1×1 мм от точек замера давления на поверхности модели (дренажных отверстий) до места присоединения к соединительным дренажным трубкам, проложенным в боковой державке.

После этого внутренняя оболочка вставляется внутрь внешней оболочки с обеспечением взаимного плотного прилегания их друг к другу по общей контактной поверхности, тем самым превращая наружные каналы на внутренней оболочке во внутренние каналы в пределах составной стенки модели.

С целью обеспечения герметичности внутренних каналов собранный корпус модели подвергается процессу диффузионной сварки, после которой внешняя и внутренняя оболочки соединяются в одно целое, образуя тонкую стенку корпуса модели с расположенными внутри стенки каналами.

Следующей операцией по подготовке модели к проведению дренажных испытаний является тщательное выполнение приемных дренажных отверстий во внешней оболочке тонкостенного корпуса модели с обеспечением всех строгих требований, предъявляемых к ним, при этом дренажные отверстия сверлятся до соединения с проложенными внутренними каналами.

Цельнометаллический, с гладкой внешней поверхностью, корпус модели с достаточной толщиной внешней оболочки 1,5-2,0 мм позволяет выполнить дренажные отверстия требуемой глубины, строго цилиндрической формы и максимально возможной чистотой обработки, что обеспечивает точность и достоверность результатов замера давления на аэродинамически гладкой поверхности модели ЛА.

К выходным сечениям внутренних каналов, подводимых к месту крепления боковой державки, присоединяются дренажные трубки, проходящие через боковую державку до соединения с устройством измерения давления, например с манометрами.

Порядок проведения экспериментального исследования распределения по поверхности аэродинамической модели состоит в следующем. К полностью собранной на монтажной плите 11 модели, установленной в рабочей части аэродинамической трубы, подсоединяются баллон с воздухом высокого давления 8 и групповой регистрирующий манометр 7. После запуска аэродинамической трубы и выхода потока на заданный режим на поверхности модели устанавливается статическое давление, различное по величине в разных точках поверхности модели и подлежащее измерению. Возникшее в точках замера на входе в дренажные отверстия статическое давление передается к регистрирующему манометру по замкнутой трассе измерительной системы, состоящей из последовательно соединенных между собой приемного дренажного отверстия, внутрикорпусных каналов и соединительных дренажных трубок.

Предлагаемая конструкция аэродинамической модели ЛА позволяет по результатам испытаний в аэродинамической трубе получить точные и достоверные данные по влиянию струи кормового реактивного двигателя на распределение давления по поверхности ЛА и на аэродинамические характеристики ЛА в целом в условиях взаимодействия набегающего потока с расширенной струей кормового реактивного двигателя, что особенно важно при создании современных летательных аппаратов, осуществляющих полет на больших высотах.

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя, включающая в себя закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки, проложенные в боковой державке и соединенные с устройством регистрации давления, систему подачи сжатого воздуха к модельному соплу, состоящую из баллона со сжатым воздухом, воздуховодов, проложенных в боковой державке, и внутренней полости модели,отличающаяся тем, что корпус модели выполнен в виде соосно размещенных одна в другой оболочек, причем на внешней поверхности внутренней оболочки выполнены криволинейные каналы сечением не более толщины оболочки, которые после соединения оболочек становятся внутрикорпусными и соединяют каждое дренажное отверстие с соответствующей дренажной трубкой в боковой державке.
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 641-650 из 783.
22.10.2019
№219.017.d90a

Способ сборки газораспределительного клапана с двумя выходными патрубками и сёдлами с расходными отверстиями, контактирующими с заслонками, установленными на приливы одного вала

Изобретение относится к области машиностроения и направлено на повышение точности установки регулирующих элементов относительно расходных отверстий газораспределительного клапана с линейной расходной характеристикой. Данный способ предназначен для сборки газораспределительных клапанов, у...
Тип: Изобретение
Номер охранного документа: 0002703556
Дата охранного документа: 21.10.2019
24.10.2019
№219.017.d9b7

Обтекатель для летательного аппарата

Изобретение относится к области авиастроения. Обтекатель (1) для летательного аппарата, содержит элементы для крепления (2) к внешней поверхности корпуса (3) и выполнен с закрываемым технологическим проемом (4). Обтекатель оборудован двумя створками (5,6), сопряженными с внешней поверхностью...
Тип: Изобретение
Номер охранного документа: 0002703813
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.d9f7

Пусковая установка

Изобретение относится к самоходным пусковым установкам, а более конкретно к пусковым установкам с самозагрузкой снарядов. Пусковая установка содержит самоходное шасси и устройство загрузки с краном. На шасси закреплено неподвижное основание с установленной на нем поворотной платформой. На...
Тип: Изобретение
Номер охранного документа: 0002703817
Дата охранного документа: 22.10.2019
24.10.2019
№219.017.da0e

Боевое отделение бронеобъекта

Изобретение относится к военной технике, к конструкциям боевых отделений (БО) боевых машин сухопутных войск легкой весовой категории. Боевое отделение бронеобъекта включает башню с размещенными на ней автоматической пушкой (АП) и спаренным пулеметом, установленными в маске, пусковой установкой...
Тип: Изобретение
Номер охранного документа: 0002703695
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.db01

Фармацевтическая композиция на основе хлорбензоиламиноадамантана, повышающая физическую работоспособность в условиях высоких и низких температур

Настоящее изобретение относится к фармацевтической промышленности, а именно фармацевтической композиции, обладающей актопротекторной и термопротекторной активностью. Фармацевтическая композиция, обладающая актопротекторной и термопротекторной активностью, в виде таблеток содержит в определенных...
Тип: Изобретение
Номер охранного документа: 0002704126
Дата охранного документа: 24.10.2019
30.10.2019
№219.017.db90

Способ аэродинамического управления летательным аппаратом

Изобретение относится к аэродинамическому управлению техническими объектами, преимущественно малоразмерными летательными аппаратами (ЛА), совершающими полет с маневрированием на небольших углах атаки и скольжения (например, по прямолинейным или баллистическим траекториям). Для аэродинамического...
Тип: Изобретение
Номер охранного документа: 0002704381
Дата охранного документа: 28.10.2019
30.10.2019
№219.017.dbac

Способ определения площадей утечек газа в двухстороннем регуляторе расхода с регулируемыми расходными отверстиями

Изобретение относится к области машиностроения, а именно к способу определения площадей утечек газа в двухстороннем регуляторе расхода с регулируемыми расходными отверстиями. Данный способ позволяет с высокой степенью точности определять непроизводительные утечки газа при перекрытых расходных...
Тип: Изобретение
Номер охранного документа: 0002704367
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dc0a

Лечебно-тренировочный электромиостимуляционный костюм

Изобретение относится к медицине, а именно к лечебно-тренировочным электромиостимуляционным костюмам для поддержания мышц в тонусе при длительном нахождении в невесомости. Костюм (1) имеет два слоя, содержит пояс (4). Верхний слой (6) плотно соприкасается с группой мышц деталями костюма из...
Тип: Изобретение
Номер охранного документа: 0002704600
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc2c

Механизм перезарядки стрелкового оружия

Изобретение относится к вспомогательным механизмам для автоматического огнестрельного оружия. Механизм перезарядки стрелкового оружия состоит из электрического привода, шток которого взаимодействует на поводок, выполненный с возможностью взаимодействия с затвором оружия, фиксатора, пружины....
Тип: Изобретение
Номер охранного документа: 0002704648
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc34

Способ прицеливания крылатых ракет наклонного старта

Изобретение относится к военной технике и может найти применение для прицеливания наклонных пусковых установок крылатых ракет, размещаемых на надводных и подводных носителях. Способ основан на использовании результатов ранее проведенных измерений на заводе-изготовителе инерциального блока...
Тип: Изобретение
Номер охранного документа: 0002704581
Дата охранного документа: 29.10.2019
Показаны записи 411-415 из 415.
04.04.2018
№218.016.3501

Мультипликатор двойного действия

Изобретение относится к гидросистемам транспортных средств. Мультипликатор состоит из дифференциального поршня, механизма реверсирования, обратных клапанов, гидрокомпенсатора, гидроаккумулятора, фильтра и штуцеров. Обратные клапаны содержат демпфирующие полости с дроссельными отверстиями. Все...
Тип: Изобретение
Номер охранного документа: 0002645881
Дата охранного документа: 28.02.2018
29.03.2019
№219.016.f6a8

Устройство для определения аэродинамических характеристик модели в сверхзвуковой аэродинамической трубе

Предлагаемое изобретение относится к измерительной технике, а именно к устройствам для определения аэродинамических характеристик моделей различных модификаций в сверхзвуковой аэродинамической трубе, по которым определяются суммарные аэродинамические характеристики натурного летательного...
Тип: Изобретение
Номер охранного документа: 0002438112
Дата охранного документа: 27.12.2011
19.04.2019
№219.017.3127

Устройство для определения аэродинамических характеристик модели в сверхзвуковой аэродинамической трубе

Изобретение относится к измерительной технике, а именно к устройствам для определения аэродинамических характеристик моделей различных модификаций в сверхзвуковой аэродинамической трубе, и может быть использовано в авиационной и аэрокосмической промышленности. Устройство содержит модель со...
Тип: Изобретение
Номер охранного документа: 0002414691
Дата охранного документа: 20.03.2011
19.06.2019
№219.017.85f2

Устройство для определения аэродинамических характеристик модели в сверхзвуковой аэродинамической трубе

Изобретение относится к измерительной технике, а именно к устройствам для определения аэродинамических характеристик моделей различных модификаций в сверхзвуковой аэродинамической трубе, по которым определяются суммарные аэродинамические характеристики натурного летательного аппарата,...
Тип: Изобретение
Номер охранного документа: 0002392601
Дата охранного документа: 20.06.2010
16.07.2020
№220.018.3329

Аэродинамическая модель летательного аппарата с воздушно-реактивным двигателем

Изобретение относится к области экспериментальной аэродинамики и может быть использовано для исследования аэродинамических характеристик сверхзвуковых летательных аппаратов в аэродинамических трубах. Аэродинамическая модель летательного аппарата с воздушно-реактивным двигателем содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002726564
Дата охранного документа: 14.07.2020
+ добавить свой РИД