×
13.01.2017
217.015.8405

Результат интеллектуальной деятельности: АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность изобретения заключается в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности аэродинамической модели, предназначенной для измерения распределения давления по поверхности, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление, воспринимаемое дренажными отверстиями, подается в каналы, которые внутри оболочки проложены к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов. Технический результат заключается в повышении точности и достоверности измерений. 2 ил.

Предлагаемое изобретение относится к измерительной технике, а именно к аэродинамическим моделям для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя.

В задаче определения аэродинамических характеристик модели летательного аппарата (ЛА) важное место занимает исследование распределения давления на обтекаемой поверхности. Обычно такое определение распределения давления по поверхности обеспечивается приемными дренажными отверстиями, размещенными на обтекаемой поверхности модели, а к этим отверстиям с внутренней стороны поверхности подводятся дренажные трубки, идущие к манометрам, которые фиксируют значения измеряемых величин давления.

В качестве ближайшего аналога принята конструкция аэродинамической модели, схемы работы измерительных устройств которой приведены в [1] на стр. 167, 220, 260 ([1] - книга авторов Краснова Н.Ф., Кошевого В.Н., Данилова А.Н. и др. Прикладная аэродинамика. М.: Высшая школа, 1974).

Согласно приведенным схемам поверхность модели дренируется и к дренажным отверстиям подсоединяются и вводятся внутрь полого корпуса модели соединительные дренажные трубки для замера давлений по поверхности модели. Дренажные трубки подходят к измерительному устройству, например к батарейному манометру [1, стр. 260], входящему в систему измерений распределения давления.

Эта задача определения распределения давления по поверхности модели становится особо сложной, если на модели ЛА имитируется работа кормового ракетного двигателя, струя которого моделируется подводимым через боковую державку сжатым воздухом (см. фиг. 1).

Весь внутренний объем модели в этом случае занят воздушной полостью, обеспечивающей необходимый расход воздуха через сопло модельного кормового двигателя, и размещать в этом внутреннем объеме большое количество подводящих дренажных трубок от манометров к дренажным отверстиям, выполненным на обтекаемой поверхности модели, недопустимо из-за сокращения проходного сечения воздушной полости и, как следствие, из-за необеспечения требуемого расхода воздуха для имитации струи кормового двигателя.

На стр. 18-19 [1] отмечено, что "при исследовании обтекания тонких тел (тонкое крыло или корпус) бывает практически невозможно расположить дренажные отверстия на тех участках поверхности, к которым нельзя провести дренажные трубки из-за малых поперечных сечений тела".

На стр. 64 [1] приведены требования к размерам дренажных отверстий: "диаметр отверстия 0.3÷0.5 мм, т.к. излишне большой размер вызывает дополнительные возмущения в потоке, что приводит к искажению измеряемого давления".

В случае когда внутренние дренажные трубки невозможно разместить внутри модели из-за малых поперечных размеров модели, в практике изготовления аэродинамических моделей возможна укладка дренажных трубок в канавки, выполненные на наружной поверхности модели (см. [2], стр. 552, книга авторов Горлина С.М. и Слезингера И.И. Аэромеханические измерения, методы и приборы. М.: Наука, 1964) (см. фиг. 1).

Практика использования размещения дренажных трубок в канавки на поверхности модели имеет существенные недостатки: после укладки дренажных трубок (изготавливаемых по необходимости из легко деформируемого материала) в криволинейные канавки необходимо канавки заполнить шпаклевочным материалом или припоем заподлицо с поверхностью с целью обеспечения высоких требований по чистоте обтекаемой поверхности (чего практически не удается достичь, поскольку материал заполнителя отличается по своим характеристикам от материала поверхности модели и искажается структура пограничного слоя). Да и обеспечить необходимые требования к дренажным отверстиям в стенках податливых дренажных трубок, уложенных в канавки, также практически невозможно из-за высоких требований к размерам дренажных отверстий: отношение глубины сверления дренажа h к диаметру дренажного отверстия D должно быть в пределах 3÷5, т.е. h/D=3÷5, дренажные отверстия сверлятся перпендикулярно к обтекаемой поверхности модели, должны быть калиброванными (без заусенец и зазубрин), что тяжело выполнить в стенке дренажной трубки из податливого материала, причем трубка уложена в канавку, заделанную также податливым при сверлении дренажных отверстий материалом, что затрудняет выполнение строгих требований к отверстиям.

Проложенные по поверхности модели канавки, обеспечивая исследование распределения давления вдоль поверхности модели, должны прокладываться по винтовым траекториям, поскольку число дренажных отверстий составляет обычно значение 10-20, и эти канавки надо свести к боковой державке (в одно место, т.к. торец модели занят модельным двигателем). Таким образом, вся внешняя поверхность модели будет изрезана проложенными криволинейными и заделанными канавками, искажающими чистоту и однородность обтекаемой поверхности в местах замера давления.

Итак, в рассмотренных известных аэродинамических моделях ЛА для определения влияния струи кормового ракетного двигателя на распределение давления по поверхности ЛА выявлены следующие недостатки: при наличии тонкостенного корпуса модели невозможно проложить дренажные трубки к точкам замера давления и выполнить дренажные отверстия, обеспечивающие точность замера давления.

С целью устранения указанных недостатков предлагается новое техническое решение для замера давления на поверхности модели.

Технической задачей данного предложения является исследование распределения давления по поверхности тонкостенной аэродинамической модели в аэродинамических испытаниях с имитацией струй кормового двигателя.

Данная техническая задача решается тем, что аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя, включающая в себя закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки, проложенные в боковой державке и соединенные с устройством регистрации давления, систему подачи сжатого воздуха к модельному соплу, состоящую из баллона со сжатым воздухом, воздуховодов, проложенных в боковой державке, и внутренней полости модели, отличается от прототипа тем, что корпус модели выполнен в виде соосно размещенных одна в другой оболочек, причем на внешней поверхности внутренней оболочки выполнены криволинейные каналы сечением не более толщины оболочки, которые после соединения оболочек становятся внутрикорпусными и соединяют каждое дренажное отверстие с соответствующей дренажной трубкой в боковой державке.

Чертеж, иллюстрирующий техническое предложение, приведен на фиг. 2.

Аэродинамическая модель ЛА для исследования распределения давления по ее поверхности в аэродинамических испытаниях с имитацией струи кормового ракетного двигателя содержит модель 1 с тонкостенным корпусом и модельным соплом 2, закрепленную на боковой державке 3, выполненной в виде пилона, систему измерения давления, состоящую из приемных дренажных отверстий 4, расположенных на наружной поверхности модели 1 и сообщающихся с каналами 5, выполненными внутри тонкостенного корпуса, в свою очередь соединенными с выводными дренажными трубками 6, присоединяемыми к регистрирующему манометру 7 и размещаемыми в боковой державке 3, систему подачи сжатого воздуха к модельному соплу 2, состоящую из баллона со сжатым воздухом 8, воздуховодов 9, проложенных в боковой державке 3 и внутренней полости модели 10, и обеспечивающую расходную характеристику модельного двигателя. Модель в сборе устанавливается в рабочей части аэродинамической трубы на монтажной плите 11, и к ней с помощью соединительных дренажных трубок 6 присоединяется групповой регистрирующий манометр 7, а к системе подачи сжатого воздуха к модельному соплу присоединяется баллон с воздухом высокого давления 8.

Суть изобретения состоит в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности модели, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление через дренажные отверстия подается в подведенные каналы, которые выходят к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов (см. фиг. 2).

Каналы, выполненные в корпусе металлической оболочки, имеют малые поперечные размеры (диаметр ~1 мм), т.е. значительно меньше поперечных размеров дренажных трубок, имеющих внешний диаметр ~2 мм, при этом для дренажных трубок нужно дополнительное пространство для их размещения (например, канавки в известных устройствах имеют поперечные размеры более 2 мм).

Технологически каналы внутри тонкостенного корпуса модели выполняются следующим образом.

Корпус модели выполняется из соосно размещенных одна в другой внешней и внутренней оболочек толщиной порядка 1,5-2,0 мм. На поверхности внутренней оболочки фрезеруются криволинейные каналы сечением 1×1 мм от точек замера давления на поверхности модели (дренажных отверстий) до места присоединения к соединительным дренажным трубкам, проложенным в боковой державке.

После этого внутренняя оболочка вставляется внутрь внешней оболочки с обеспечением взаимного плотного прилегания их друг к другу по общей контактной поверхности, тем самым превращая наружные каналы на внутренней оболочке во внутренние каналы в пределах составной стенки модели.

С целью обеспечения герметичности внутренних каналов собранный корпус модели подвергается процессу диффузионной сварки, после которой внешняя и внутренняя оболочки соединяются в одно целое, образуя тонкую стенку корпуса модели с расположенными внутри стенки каналами.

Следующей операцией по подготовке модели к проведению дренажных испытаний является тщательное выполнение приемных дренажных отверстий во внешней оболочке тонкостенного корпуса модели с обеспечением всех строгих требований, предъявляемых к ним, при этом дренажные отверстия сверлятся до соединения с проложенными внутренними каналами.

Цельнометаллический, с гладкой внешней поверхностью, корпус модели с достаточной толщиной внешней оболочки 1,5-2,0 мм позволяет выполнить дренажные отверстия требуемой глубины, строго цилиндрической формы и максимально возможной чистотой обработки, что обеспечивает точность и достоверность результатов замера давления на аэродинамически гладкой поверхности модели ЛА.

К выходным сечениям внутренних каналов, подводимых к месту крепления боковой державки, присоединяются дренажные трубки, проходящие через боковую державку до соединения с устройством измерения давления, например с манометрами.

Порядок проведения экспериментального исследования распределения по поверхности аэродинамической модели состоит в следующем. К полностью собранной на монтажной плите 11 модели, установленной в рабочей части аэродинамической трубы, подсоединяются баллон с воздухом высокого давления 8 и групповой регистрирующий манометр 7. После запуска аэродинамической трубы и выхода потока на заданный режим на поверхности модели устанавливается статическое давление, различное по величине в разных точках поверхности модели и подлежащее измерению. Возникшее в точках замера на входе в дренажные отверстия статическое давление передается к регистрирующему манометру по замкнутой трассе измерительной системы, состоящей из последовательно соединенных между собой приемного дренажного отверстия, внутрикорпусных каналов и соединительных дренажных трубок.

Предлагаемая конструкция аэродинамической модели ЛА позволяет по результатам испытаний в аэродинамической трубе получить точные и достоверные данные по влиянию струи кормового реактивного двигателя на распределение давления по поверхности ЛА и на аэродинамические характеристики ЛА в целом в условиях взаимодействия набегающего потока с расширенной струей кормового реактивного двигателя, что особенно важно при создании современных летательных аппаратов, осуществляющих полет на больших высотах.

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя, включающая в себя закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки, проложенные в боковой державке и соединенные с устройством регистрации давления, систему подачи сжатого воздуха к модельному соплу, состоящую из баллона со сжатым воздухом, воздуховодов, проложенных в боковой державке, и внутренней полости модели,отличающаяся тем, что корпус модели выполнен в виде соосно размещенных одна в другой оболочек, причем на внешней поверхности внутренней оболочки выполнены криволинейные каналы сечением не более толщины оболочки, которые после соединения оболочек становятся внутрикорпусными и соединяют каждое дренажное отверстие с соответствующей дренажной трубкой в боковой державке.
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
АЭРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЛЕТАТЕЛЬНОГО АППАРАТА ДЛЯ ИССЛЕДОВАНИЯ РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ ПО ПОВЕРХНОСТИ В АЭРОДИНАМИЧЕСКИХ ИСПЫТАНИЯХ С ИМИТАЦИЕЙ СТРУЙ КОРМОВОГО РЕАКТИВНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 783.
10.04.2016
№216.015.2efc

Способ измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях,...
Тип: Изобретение
Номер охранного документа: 0002580340
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3415

Способ определения аномалий на морской поверхности неконтактным радиолокационным методом

Изобретение относится к области гидрофизики, в частности к дистанционному контролю гидрологических процессов взаимодействия ветрового волнения и внутренних волн. Достигаемый технический результат - преобразование текстурных признаков изображения в "шероховатость" пространственного волнения,...
Тип: Изобретение
Номер охранного документа: 0002582073
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36e3

Бинокль для дневного и ночного наблюдения

Изобретение относится к биноклю для дневного и ночного наблюдения. Бинокль содержит дневной канал, состоящий из двухкомпонентного объектива, оборачивающей системы и окуляра с сеткой. Также бинокль содержит ночной канал, состоящий из двухкомпонентного объектива ночного канала,...
Тип: Изобретение
Номер охранного документа: 0002581386
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36fa

Способ оптико-электронного противодействия

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала. В случае функционирования в поле зрения...
Тип: Изобретение
Номер охранного документа: 0002581779
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f0

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах для совершенствования аэродинамики их проточной части за счет управления течением у корпуса рабочих колес. В стенке корпуса над лопатками рабочих колес, по крайней мере одной ступени,...
Тип: Изобретение
Номер охранного документа: 0002582537
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ac3

Термоэмиссионный способ тепловой защиты частей летательных аппаратов

Термоэмиссионный способ тепловой защиты частей летательных аппаратов (ЛА) включает отвод теплового потока от нагреваемой части ЛА к менее нагретой с помощью термоэмиссионного модуля посредством размещения на внутренней поверхности нагреваемых частей ЛА электропроводящего материала или покрытия,...
Тип: Изобретение
Номер охранного документа: 0002583511
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b21

Способ одновременного выведения группы спутников на некомпланарные орбиты (варианты)

Группа изобретений относится к формированию систем ИСЗ с некомпланарными орбитами. Способ включает одновременное выведение группы ИСЗ ракетой-носителем (РН). При этом на РН устанавливают гиперзвуковой летательный аппарат (ГЛА), выводимый на баллистическую траекторию, в апогее которой ГЛА...
Тип: Изобретение
Номер охранного документа: 0002583507
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3db9

Защитная панель летательного аппарата

Изобретение относится к ракетно-космической технике и касается защитных панелей. Защитная панель летательного аппарата (ЛА) состоит из плиток, жестко закрепленных на внешней поверхности ЛА. На каждой плитке выполнены выступ в центральной части и вырезы на краях. Плитки соединены между собой...
Тип: Изобретение
Номер охранного документа: 0002583532
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fb1

Способ создания пассивной помехи

Изобретение относится к области радиотехники и может быть использовано при защите объектов радиоэлектронными средствами. Способ создания пассивной помехи путем имитации цели, основанный на рассеянии падающего электромагнитного поля нанесенным на объект покрытием, заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002584675
Дата охранного документа: 20.05.2016
Показаны записи 191-200 из 415.
10.04.2016
№216.015.2e8b

Способ сложения мощности радиопередатчиков

Изобретение относится к радиотехнике и может использоваться в передающих центрах связи. Достигаемый технический результат - повышение уровня сигнала канала связи, требующего восстановления. Способ сложения мощности радиопередатчиков характеризуется тем, что используются широкополосные мосты...
Тип: Изобретение
Номер охранного документа: 0002580401
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2efc

Способ измерения коэффициента усиления антенн в натурных условиях

Изобретение относится к технике антенных измерений и может быть использовано для измерения коэффициента усиления антенн различных радиоэлектронных средств в натурных условиях, в частности в условиях городской застройки. Способ измерения коэффициента усиления антенн в натурных условиях,...
Тип: Изобретение
Номер охранного документа: 0002580340
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3415

Способ определения аномалий на морской поверхности неконтактным радиолокационным методом

Изобретение относится к области гидрофизики, в частности к дистанционному контролю гидрологических процессов взаимодействия ветрового волнения и внутренних волн. Достигаемый технический результат - преобразование текстурных признаков изображения в "шероховатость" пространственного волнения,...
Тип: Изобретение
Номер охранного документа: 0002582073
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36e3

Бинокль для дневного и ночного наблюдения

Изобретение относится к биноклю для дневного и ночного наблюдения. Бинокль содержит дневной канал, состоящий из двухкомпонентного объектива, оборачивающей системы и окуляра с сеткой. Также бинокль содержит ночной канал, состоящий из двухкомпонентного объектива ночного канала,...
Тип: Изобретение
Номер охранного документа: 0002581386
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36fa

Способ оптико-электронного противодействия

Изобретение относится к области противодействия оптико-электронным системам (ОЭС) различного назначения. Способ основан на согласовании ориентации каждого передающего канала помехового сигнала с ориентацией соответствующего пеленгационного канала. В случае функционирования в поле зрения...
Тип: Изобретение
Номер охранного документа: 0002581779
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3985

Транспортное средство для буксировки поврежденных автомобилей

Изобретение относится к автомобильному транспорту. Транспортное средство для буксировки поврежденных автомобилей способом полупогрузки содержит надрамник с опорной стойкой, тяговую лебедку, поворотную телескопическую балку с выдвижной секцией (7) и траверсу (9), оборудованную корзинами (10, 11)...
Тип: Изобретение
Номер охранного документа: 0002582561
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39f0

Осевой компрессор

Изобретение относится к области авиационного двигателестроения и может быть использовано в осевых компрессорах для совершенствования аэродинамики их проточной части за счет управления течением у корпуса рабочих колес. В стенке корпуса над лопатками рабочих колес, по крайней мере одной ступени,...
Тип: Изобретение
Номер охранного документа: 0002582537
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ac3

Термоэмиссионный способ тепловой защиты частей летательных аппаратов

Термоэмиссионный способ тепловой защиты частей летательных аппаратов (ЛА) включает отвод теплового потока от нагреваемой части ЛА к менее нагретой с помощью термоэмиссионного модуля посредством размещения на внутренней поверхности нагреваемых частей ЛА электропроводящего материала или покрытия,...
Тип: Изобретение
Номер охранного документа: 0002583511
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3b21

Способ одновременного выведения группы спутников на некомпланарные орбиты (варианты)

Группа изобретений относится к формированию систем ИСЗ с некомпланарными орбитами. Способ включает одновременное выведение группы ИСЗ ракетой-носителем (РН). При этом на РН устанавливают гиперзвуковой летательный аппарат (ГЛА), выводимый на баллистическую траекторию, в апогее которой ГЛА...
Тип: Изобретение
Номер охранного документа: 0002583507
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3db9

Защитная панель летательного аппарата

Изобретение относится к ракетно-космической технике и касается защитных панелей. Защитная панель летательного аппарата (ЛА) состоит из плиток, жестко закрепленных на внешней поверхности ЛА. На каждой плитке выполнены выступ в центральной части и вырезы на краях. Плитки соединены между собой...
Тип: Изобретение
Номер охранного документа: 0002583532
Дата охранного документа: 10.05.2016
+ добавить свой РИД