×
13.01.2017
217.015.83c0

Результат интеллектуальной деятельности: СОСТАВ ДЛЯ ИНГИБИРОВАНИЯ ОБРАЗОВАНИЯ ГИДРАТОВ В УГЛЕВОДОРОДСОДЕРЖАЩЕМ СЫРЬЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к составам для ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих гидратообразующие агенты и воду, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов. Состав содержит кинетический ингибитор, термодинамический ингибитор и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы ROCHCHOR, где R - атом водорода или алкильный радикал, R - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.: кинетический ингибитор гидратообразования 2,0-8,0; термодинамический ингибитор гидратообразования 84,0-96,0; синергетическая добавка - остальное. Технический результат - повышение ингибирующей способности. 4 пр.

Изобретение относится к составам ингибирования образования газовых гидратов в различных углеводородсодержащих жидкостях и газах, содержащих воду и гидратообразующие агенты, и может быть использовано в процессах добычи, переработки и транспортировки углеводородного сырья для предотвращения образования газовых гидратов.

Образование газовых гидратов в промысловом оборудовании и трубопроводах - одна из важнейших технологических проблем, возникающая при добыче, транспортировке и переработке жидкого и газообразного углеводородного сырья.

В природном газе, газовом конденсате, нефти присутствуют соединения (CH4, C2H6, C3H8, изо-C4H10, н-C4H10, CO2, H2S), при определенных термобарических условиях в присутствии воды образующие газовые гидраты, которые, являясь твердыми кристаллическими веществами, отлагаются на стенках труб и оборудования, что приводит к резкому уменьшению пропускной способности добывающих скважин, технологических трубопроводов вплоть до их полной закупорки. Образование газогидратных пробок может привести к остановке процессов добычи, транспортировки, переработки углеводородного сырья и, как следствие, к значительным финансовым потерям.

Известно использование в качестве состава для ингибирования газовых гидратов в углеводородсодержащем сырье термодинамического ингибитора гидратообразования (ТИГ), в частности спирта (RU 2049957, 1998).

Однако из-за высоких рабочих концентраций термодинамических ингибиторов (до 60% мас..) применение такого состава сопряжено с высокими затратами и экологическими проблемами.

Известно использование в качестве состава для ингибирования гидратообразования в углеводородсодержащем сырье кинетического ингибитора гидратообразования (КИГ) (RU 2126513, 1999, RU 2134678, 1999, RU 2137740, 1999). Такого рода реагенты, не влияя на термодинамику, значительно влияют на кинетику процесса гидратообразования, увеличивая индукционный период данного процесса. Основными преимуществами кинетических ингибиторов гидратообразования, представляющих собой, как правило, водорастворимые полимеры, являются их невысокие рабочие концентрации (0,3-1% мас..) и низкая токсичность. Основной недостаток КИГ заключается в том, что они не могут использоваться в холодных климатических условиях при температурах ниже 0°C, так как низкие рабочие концентрации не обеспечивают существенной депрессии температуры замерзания воды. Для таких условий перспективным является подход, связанный с использованием комбинированных реагентов, сочетающих в себе достоинства кинетических ингибиторов гидратообразования и антифризных веществ.

Известен состав для ингибирования газовых гидратов в углеводородсодержащем сырье, который содержит по меньшей мере один кинетический ингибитор гидратоообразования и по меньшей мере один термодинамический ингибитор гидратообразования (CA 2506925, 2006).

При этом кинетический ингибитор гидратообразования, в частности, включает аминированные полиалкиленгликоли, представленные формулой R1R2N[(A)a-(B)b-(A)c-(CH2)d-CH(R)-NR1]nR2 (I), в которой: - каждый А независимо отобран из -CH2CH(CH3)O- или -CH(CH3)CH2O-; В представляет из себя -CH2CH2O-; a+b+c составляет от 1 до приблизительно 100; R представляет из себя -H или -CH3; - каждый R1 и R2 независимо выбраны из группы, состоящей из -Н, -CH3, -H2CH2OH и -CH(CH3)CH2O; d от 1 до приблизительно 6; n от 1 до приблизительно 4.

Недостатки указанного состава заключаются в высокой коррозионной активности используемых ТИГ (солей-электролитов), сложности синтеза КИГ, высоком расходе полимерного КИГ, относительно малой максимальной степени переохлаждения и недостаточном индукционном периоде гидратообразования.

Более близким к изобретению является состав, используемый при проведении способа ингибирования образования гидратов углеводородов, включающий закачку данного состава в прискважинную зону или в участок трубопровода. Указанный состав содержит водный раствор полимера из группы, включающей: сополимер пирролидона или капролактама, терполимер на основе N-винил-2-пирролидона, диметиламиноэтилметакрилат, гидроксиэтилцеллюлозу, поливинипирролидон, поливинилкарбоксилат, полиакрилат, поливинилкапролактам, акриламидометилпропансульфонат, полиакриламид, гипан, полиоксипро в масле полимера из группы, включающей: полиакриламид, карбоксиметилцеллюлозу, эфир оксиэтилцеллюлозы, полиметакрилат, поливинилацетат или поливиниловый спирт или их сополимеры, и дополнительно - карбамидоформальдегидный концентрат КФК и гидрофобизирующую добавку при следующем соотношении компонентов, мас. %: указанные водный раствор или эмульсия 0,05-5,0, КФК 0,1-5,0, гидрофобизирующая добавка 0,1-5,0, вода остальное. При этом перед закачкой указанной композиции дополнительно закачивают оторочку КФК в количестве 0,1-5,0 мас. % от мас.ы указанного состава и осуществляют выдержку не менее 3-5 ч. Дополнительно указанный состав может содержать соляную или уксусную кислоту, или смесь их, или смесь соляной кислоты и концентрата низкомолекулярных кислот, или фосфорную или ортофосфорную кислоту в количестве 0,05-0,20 мас. % (RU 2504642, 2014).

Недостатки указанного состава заключаются в том, что он при ингибировании гидратообразования не обеспечивает достаточную степень снижения (депрессии) температуры кристаллизации льда, что не позволяет применять указанный состав при температурах ниже 0°C, не обеспечивает также необходимую степень переохлаждения при образовании гидратов. Кроме того, использование данного состава приводит к недостаточно высокому индукционному периоду гидратообразования.

Таким образом, известный состав недостаточно эффективен.

Задача изобретения заключается в повышении эффективности состава для ингибирования образования гидратов в углеводородсодержащем сырье.

Поставленная задача достигается описываемым составом ингибирования образования гидратов в углеводородсодержащем сырье, включающим воду и гидратообразующие компоненты, содержащим кинетический ингибитор гидратообразования, термодинамический ингибитор гидратообразования и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, a R2 - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.:

кинетический ингибитор гидратообразования 2,0-8,0
термодинамический ингибитор гидратообразования 84,0-96,0
синергетическая добавка остальное до 100

Достигаемый технический результат заключается в более высокой, по сравнению с известным составом, ингибирующей способности описываемого состава.

Так, описываемый состав может быть использован для ингибирования образования газовых гидратов при степени переохлаждения до 30°C с индукционным периодом, достигающим 40 часов и выше, в том числе при пониженных температурах <0°C (известный способ обеспечивает ингибирование при более высоких температурах при степени переохлаждения не выше 12,6°C с индукционным периодом в диапазоне 17-36,8 часов). Используемые в составе компоненты ингибируют начальное образование (нуклеацию) газовых гидратов, замедляют образование или рост кристаллов гидратов, предотвращают агломерацию кристаллов гидратов меньшего размера в более крупные.

В качестве углеводородсодержащего сырья возможно использовать такое, как, например, нефтяные водосодержащие эмульсии, указанные эмульсии, содержащие углеводородный газ, газовый конденсат, сырье, содержащее гидратообразующий газ, воду, а также другое углеводородсодержащее сырье, содержащее воду и гидратообразующие компоненты, характерное, в частности, для процессов добычи, переработки и транспортировки углеводородного сырья.

Описываемый состав вводят в исходное сырье в количестве 2,5 -50,0% мас. от воды, содержащейся в указанном сырье. Ввод состава в указанном количестве в углеводородное сырье, включающее воду и гидратообразующие компоненты, обеспечивает оптимальное содержание компонентов состава и воды, составляющее: кинетический ингибитор гидратообразования 0,1-2,0% мас., термодинамический ингибитор гидратообразования 5,0-40,0% мас., синергетическая добавка 0,1-2,0% мас., вода - остальное, до 100% мас. Конкретное соотношение определяется природой компонентов композиции и термобарическими условиями на нефтегазовом объекте.

В описываемом составе для ингибирования образования гидратов в качестве кинетического ингибитора гидратообразования используют водорастворимые полимеры, такие, в частности, как поли-N-виниллактамы, замещенные полиакриламиды, сверхразветвленные полиэфирамиды, поливиниловый спирт и его производные и другие высокомолекулярные соединения, обладающие свойствами КИГ. В качестве термодинамического ингибитора гидратообразования возможно использовать, в частности, метанол, этанол, моно-, ди-, триэтиленгликоль, пропиленгликоль, глицерин, низкомолекулярные простые эфиры моно-, ди- и триэтиленгликоля, пропиленгликоля, мочевину или их смесь. В качестве синергетической добавки используют четвертичные аммониевые соли (например, галогениды тетрабутиламмония, галогениды цетилтриметиламмония, галогениды цетилдиметиламмония, галогениды додецилдиметиламмония, галогениды дидодецилдиметиламмония), моно- и диалкиловые эфиры этиленгликоля общей формулы R1OCH2CH2OR2, где R1 - атом водорода или алкильный радикал, в частности, с числом углеродных атомов больше 3, a R2 - алкильный радикал, в частности, с числом углеродных атомов больше 3 (например, монобутиловый эфир этиленгликоля, дибутиловый эфир этиленгликоля), оксиэтилированные жирные спирты (например, Синтанол АЛМ-10, Surfynol 485), оксипропилированные жирные спирты, полиэтиленоксид (с молекулярной ой, в частности, 200-8000), полипропиленоксид (с молекулярной массой, в частности, 200-8000), сополимеры этиленоксида и пропиленоксида (например, со средней молекулярной массой 5000) или смесь указанных веществ.

Использование такого комбинированного состава позволяет повысить достоинства указанных классов ингибиторов и, как следствие, повысить эффективность ингибирования гидратообразования. С одной стороны, использование антигидратных реагентов позволяет значительно снизить расход термодинамического ингибитора гидратообразования. С другой, используемые антигидратные реагенты могут быть использованы для образования гидратов в технологических процессах при температуре <0°C благодаря тому, что входящий в состав термодинамический ингибитор одновременно является антифризным веществом и поэтому значительно понижает температуру кристаллизации льда. Предотвращение образования льда наряду с ингибированием гидратообразования является обязательным условием, ограничивающим спектр используемых ингибиторов в условиях пониженных температур. Использование кинетического ингибитора без применения других компонентов неэффективно при температурах <0°C, так как вследствие низких рабочих концентраций последний не обеспечивает существенной депрессии температуры кристаллизации льда. Наличие в составе синергетической добавки в указанных количествах предопределяет повышение его ингибирующей способности, позволяет снизить концентрацию и, следовательно, расход дорогостоящего полимерного КИГ. Кроме того, наличие в составе поверхностно-активных соединений (четвертичные аммониевые соли, эфиры моно-, ди- и триэтиленгликоля, оксиэтилированные и оксипропилированные жирные спирты, сополимеры этиленоксида и пропиленоксида) придает описываемому составу антиагломерантные свойства.

Описываемый состав для ингибирования образования гидратов получают следующим образом.

Вышеуказанный состав готовят путем смешивания расчетных количеств компонентов в отдельной емкости. Для получения используемого состава кинетический ингибитор гидратообразования растворяют в термодинамическом ингибиторе гидратообразования при температуре 20-30°C и интенсивном перемешивании. Затем в смесь при перемешивании добавляют синергетическую добавку. Готовый состав вводят в углеводородсодержащее сырье, содержащее воду и гидратообразующие компоненты различным образом, в частности непосредственно в сырье, закачивают в прискважинную зону или в участок трубопровода.

Изобретение иллюстрируется нижеприведенными примерами, не ограничивающими его использование.

Применение состава иллюстрируется на примере использования в качестве исходного углеводородсодержащего сырья модельной смеси, состоящий из газовой смеси 95,66% CH4 + 4,34% C3H8 и воды.

Пример 1

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют сополимер N-винилкапролактама и N-винилпирролидона (соотношение звеньев 1:1, средневесовая молекулярная масса 3000) в количестве 2,5% мас., в качестве термодинамического ингибитора гидратообразования - моноэтиленгликоль в количестве 94% мас., в качестве синергетической добавки - монобутиловый эфир этиленгликоля в количестве 3,5% мас. При этом кинетический ингибитор растворяют в моноэтиленгликоле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют монобутиловый эфир этиленгликоля и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 27% от массы воды, содержащейся в исходном сырье. После добавления композиции полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 8°C. 250 см3 полученного раствора помещают в автоклав объемом 500 см3. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°С/ч. Образование гидрата начинается при температуре минус 7,7°C, что соответствует степени переохлаждения 21,4°C (равновесная температура 13,7°C для неингибированной системы).

Индукционный период гидратообразования измеряют следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают гидратообразующим газом с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 3°C и термостатируют. В автоклав подают газовую смесь до давления 3,58 МПа. Процесс гидратообразования начинается через 38,6 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 38,6 часов.

Пример 2

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют сополимер N-винилкапролактама и N-винилпирролидона (соотношение звеньев 1:1, средневесовая молекулярная масса 3000) в количестве 5,0% мас., в качестве термодинамического ингибитора гидратообразования - метанол в количестве 90% мас., в качестве синергетической добавки - бромид тетрабутиламмония в количестве 5,0% мас. При этом кинетический ингибитор растворяют в метаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют бромид тетрабутиламмония и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 11% мас. от количества воды, содержащейся в исходном сырье. После добавления композиции полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 8°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 7,5°C, что соответствует степени переохлаждения 21,2°C (равновесная температура 13,7°C для неингибированной системы).

Индукционный период гидратообразования измеряют следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают гидратообразующим газом с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 3°C и термостатируют. В автоклав подают газовую смесь до давления 3,58 МПа. Процесс гидратообразования начинается через 37,1 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 37,1 часа.

Пример 3

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют поли(N-винилкапролактам) (средневесовая молекулярная масса 3000) в количестве 8,0% мас., в качестве термодинамического ингибитора гидратообразования - этанол в количестве 84% мас., в качестве синергетической добавки - оксиэтилированный жирный спирт Синтанол АЛМ-10 4,0% мас. и бромид цетилтриметиламмония 4% мас. При этом кинетический ингибитор растворяют в этаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют Синтанол АЛМ-10, бромид цетилтриметиламмония и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 8,0% мас. от количества воды, содержащейся в исходном сырье. После добавления полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 4,5°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 4,1°C, что соответствует степени переохлаждения 18,0°C (равновесная температура 13,9°C для неингибированной системы).

Индукционный период гидратообразования измеряли следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходным сырьем с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до 0°C и термостатируют. В автоклав подают газовую смесь до давления 3,65 МПа. Процесс гидратообразования начинается через 40,1 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 40,1 часов.

Пример 4

Для приготовления описываемой композиции в качестве кинетического ингибитора гидратообразования используют поли(N-винилкапролактам) (средневесовая молекулярная масса 3000) в количестве 4,8% мас., в качестве термодинамического ингибитора гидратообразования - метанол в количестве 90,2% мас., в качестве синергетической добавки - лапрол (полипропиленоксид) 5,0% мас. При этом кинетический ингибитор растворяют в метаноле и размешивают при температуре 20-30°C до однородной массы. В получившийся раствор добавляют лапрол и вновь перемешивают до однородной массы.

Количество добавляемой композиции в сырье составляет 26,7% мас. от количества воды, содержащейся в исходном сырье. После добавления полученную смесь перемешивают на магнитной мешалке до полного растворения композиции. Полученный водный раствор имеет температуру кристаллизации льда, равную минус 19°C. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходной газовой смесью с целью удаления воздуха. После продувки в автоклав подают газовую смесь до давления 4 МПа при комнатной температуре. Содержимое автоклава перемешивают лопастной мешалкой со скоростью 600 об/мин и охлаждают со скоростью 1°C/ч. Образование гидрата начинается при температуре минус 15,1°C, что соответствует степени переохлаждения 28,5°С (равновесная температура 13,4°С для неингибированной системы).

Индукционный период гидратообразования измеряли следующим образом. 250 см3 полученного раствора помещают в автоклав. Свободный объем автоклава продувают исходным сырьем с целью удаления воздуха. Содержимое автоклава при перемешивании со скоростью 600 об/мин охлаждают до минус 10°С и термостатируют. В автоклав подают газовую смесь до давления 3,55 МПа. Процесс гидратообразования начинается через 45,3 часов после подачи гидратообразующего газа. Таким образом, индукционный период составляет 45,3 часа.

Использование описываемого состава, содержащего иные вышеперечисленные вещества в иных концентрациях, входящих в указанный выше интервал, приводит к аналогичным результатам.

Из приведенных данных следует, что описываемый состав обладает более высокой ингибирующей способностью, чем известный.

Состав для ингибирования образования гидратов в углеводородсодержащем сырье, включающем воду и гидратообразующие компоненты, содержащий кинетический ингибитор гидратообразования, термодинамический ингибитор гидратообразования и синергетическую добавку, выбранную из группы, включающей четвертичные аммониевые соли, эфиры этиленгликоля общей формулы ROCHCHOR, где R - атом водорода или алкильный радикал, R - алкильный радикал, оксиэтилированные жирные спирты, оксипропилированные жирные спирты, полиэтиленоксид, полипропиленоксид, сополимеры этиленоксида и пропиленоксида или смесь указанных веществ при следующем соотношении компонентов, % мас.:
Источник поступления информации: Роспатент

Показаны записи 41-50 из 50.
26.08.2017
№217.015.e4e4

Способ разработки многопластовых нефтяных залежей с гидродинамически связанными пластами

Изобретение относится к области разработки нефтяных месторождений, а именно к способам разработки многопластовых залежей нефти, включающих гидродинамически связанные пласты. Способ включает разбуривание залежи скважинами, определение границ пластов с различной проницаемостью. Затем производят...
Тип: Изобретение
Номер охранного документа: 0002626491
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.eda7

Способ получения фурановых соединений из углеводов, целлюлозы или лигноцеллюлозного сырья

Изобретение относится к области получения жидких органических веществ из лигноцеллюлозного сырья и углеводов, а именно к способу получения фурановых соединений, заключающемуся в том, что углеводы, целлюлозу или предобработанное с помощью гамма-облучения и/или окисления лигноцеллюлозное сырье...
Тип: Изобретение
Номер охранного документа: 0002628802
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.007d

Способ испытаний погружных центробежных насосов

Изобретение относится к нефтяной промышленности и может быть использовано при стендовых испытаниях погружных центробежных насосов для добычи нефти. Способ испытаний насосов включает осуществление цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы...
Тип: Изобретение
Номер охранного документа: 0002629313
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0610

Штамм базидиомицета trametes hirsuta - продуцент этилового спирта

Изобретение относится к биотехнологии. Штамм базидиального гриба Trametes hirsute, обладающий способностью продуцировать этиловый спирт, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ F-1287. Штамм Trametes hirsute ВКПМ F-1287 позволяет...
Тип: Изобретение
Номер охранного документа: 0002630997
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0841

Способ для механизированной насосной эксплуатации скважин и устройство для его осуществления

Группа изобретений относится к нефтегазодобывающей промышленности и может быть использована при скважинной добыче нефти, а также при добыче газа из обводненных низконапорных газовых и газоконденсатных скважин. Технический результат - повышение продуктивности скважины и продление сроков ее...
Тип: Изобретение
Номер охранного документа: 0002631517
Дата охранного документа: 25.09.2017
17.02.2018
№218.016.2dda

Способ получения стимулятора роста растений

Изобретение относится к стимуляторам роста растений из лигноцеллюлозного сырья. Лигноцеллюлозное сырье смешивают с водой в расчете от 5,0 до 100,0 г воды на 1 г сырья. Добавляют к полученной смеси катализатор окисления, представляющий собой суспензию дисперсного оксида или гидроксида железа...
Тип: Изобретение
Номер охранного документа: 0002643723
Дата охранного документа: 05.02.2018
20.06.2018
№218.016.6415

Способ получения радиационно-сшитого полимерного материала

Изобретение относится к области радиационной модификации полимеров и может быть использовано при производстве нагревостойких нефтепогружных кабелей, труб, термоусаживающихся пленок и трубок, при изготовлении упаковочных материалов, при изготовлении синтетических и полусинтетических текстильных...
Тип: Изобретение
Номер охранного документа: 0002657909
Дата охранного документа: 18.06.2018
17.08.2018
№218.016.7c80

Способ получения п-ксилола

Изобретение относится к способу получения п-ксилола путем контактирования алифатического спирта при температуре 400-550°С, атмосферном давлении, объемной скорости подачи сырья 1,5-2,5 ч с катализатором, содержащим микромезопористый композит в водородной форме, оксид цинка, оксид хрома при...
Тип: Изобретение
Номер охранного документа: 0002663906
Дата охранного документа: 13.08.2018
28.08.2018
№218.016.8006

Многоцелевая низкотемпературная пластичная смазка

Изобретение относится к созданию многоцелевой низкотемпературной пластичной смазки для узлов трения, работающих в диапазоне температур от минус 60 до плюс 150°С, и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности. Сущность: многоцелевая...
Тип: Изобретение
Номер охранного документа: 0002665042
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8025

Термостабильный катализатор изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен термостабильный катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, мас.%: упорядоченный мезопористый оксид кремния - 10,0-75,0, алюмосиликатные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002665040
Дата охранного документа: 27.08.2018
Показаны записи 41-50 из 111.
19.01.2018
№218.016.0610

Штамм базидиомицета trametes hirsuta - продуцент этилового спирта

Изобретение относится к биотехнологии. Штамм базидиального гриба Trametes hirsute, обладающий способностью продуцировать этиловый спирт, депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ F-1287. Штамм Trametes hirsute ВКПМ F-1287 позволяет...
Тип: Изобретение
Номер охранного документа: 0002630997
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0841

Способ для механизированной насосной эксплуатации скважин и устройство для его осуществления

Группа изобретений относится к нефтегазодобывающей промышленности и может быть использована при скважинной добыче нефти, а также при добыче газа из обводненных низконапорных газовых и газоконденсатных скважин. Технический результат - повышение продуктивности скважины и продление сроков ее...
Тип: Изобретение
Номер охранного документа: 0002631517
Дата охранного документа: 25.09.2017
17.02.2018
№218.016.2dda

Способ получения стимулятора роста растений

Изобретение относится к стимуляторам роста растений из лигноцеллюлозного сырья. Лигноцеллюлозное сырье смешивают с водой в расчете от 5,0 до 100,0 г воды на 1 г сырья. Добавляют к полученной смеси катализатор окисления, представляющий собой суспензию дисперсного оксида или гидроксида железа...
Тип: Изобретение
Номер охранного документа: 0002643723
Дата охранного документа: 05.02.2018
09.06.2018
№218.016.5d2f

Штамм базидиомицета laetiporus sulphureus вкпм f-1286 - продуцент липидов

Изобретение относится к биотехнологии. Штамм базидиомицета Laetiporus sulphureus МТ-11.01, обладающий способностью продуцировать липиды в условиях погруженного культивирования, депонирован во Всероссийской коллекции промышленных микроорганизмов ГосНИИгенетика под номером ВКПМ F-1286. Штамм...
Тип: Изобретение
Номер охранного документа: 0002656143
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.6415

Способ получения радиационно-сшитого полимерного материала

Изобретение относится к области радиационной модификации полимеров и может быть использовано при производстве нагревостойких нефтепогружных кабелей, труб, термоусаживающихся пленок и трубок, при изготовлении упаковочных материалов, при изготовлении синтетических и полусинтетических текстильных...
Тип: Изобретение
Номер охранного документа: 0002657909
Дата охранного документа: 18.06.2018
28.08.2018
№218.016.7fff

Способ получения биодизельного топлива

Изобретение относится к получению топлив из возобновляемого сырья. Способ получения биодизельного топлива заключается в том, что масло смешивают с низшим спиртом с получением смеси, затем проводят процесс переэтерификации с использованием воды и каталитически активной мембраны, состоящей...
Тип: Изобретение
Номер охранного документа: 0002665041
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8006

Многоцелевая низкотемпературная пластичная смазка

Изобретение относится к созданию многоцелевой низкотемпературной пластичной смазки для узлов трения, работающих в диапазоне температур от минус 60 до плюс 150°С, и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности. Сущность: многоцелевая...
Тип: Изобретение
Номер охранного документа: 0002665042
Дата охранного документа: 27.08.2018
28.08.2018
№218.016.8025

Термостабильный катализатор изомеризации ароматических углеводородов с-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен термостабильный катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, мас.%: упорядоченный мезопористый оксид кремния - 10,0-75,0, алюмосиликатные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002665040
Дата охранного документа: 27.08.2018
26.09.2018
№218.016.8c17

Способ получения синтез-газа

Изобретение относится к способу получения синтез-газа путем термохимической переработки комбинированного сырья, состоящего из растительного сырья и тяжелого углеводородного сырья. Способ осуществляется путем нагрева тяжелого углеводородного сырья до температуры 60-90°С, а растительное сырье...
Тип: Изобретение
Номер охранного документа: 0002668043
Дата охранного документа: 25.09.2018
03.10.2018
№218.016.8d93

Катализатор для гидротермального сжижения биомассы растительного происхождения

Изобретение относится к катализаторам для гидротермального сжижения биомассы растительного происхождения и может быть использовано при получении альтернативных жидких моторных топлив. Катализатор нахадится во фторированной и/или сульфатированной форме и содержит, мас.%: оксид стронция или оксид...
Тип: Изобретение
Номер охранного документа: 0002668423
Дата охранного документа: 01.10.2018
+ добавить свой РИД