×
13.01.2017
217.015.8391

КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение раскрывает комбинированный способ получения судовых высоковязких топлив и нефтяного кокса, включающий использование легкого и тяжелого газойлей коксования, характеризующийся тем, что при перегонке нефти выделяют фракцию вакуумного газойля, 95% которого выкипает в пределах от 350 до 500°С, и гудрон-фракцию, выкипающую выше 500°С, при этом каталитическому крекингу с выделением тяжелой газойлевой фракции от 180 до 400°C подвергают фракцию вакуумного газойля от 350 до 500°С, предварительно гидроочищенную, висбрекингу - гудрон с выделением висбрекинг-остатка, а замедленному коксованию - смесь гудрона и тяжелого газойля каталитического крекинга, взятых в массовом соотношении 70-90:10-30, с выделением из продуктов реакций легкого газойля замедленного коксования от 180 до 360°C и нефтяного электродного кокса и последующим компаундированием висбрекинг-остатка (ВО) и легкого газойля замедленного коксования (ЛГЗК) от 180 до 360° для получения судовых высоковязких топлив, взятых в массовом соотношении: Технический результат заключается в получении низкосернистого судового высоковязкого топлива и нефтяного электродного кокса высокого качества - с низким содержанием серы и ванадия для нужд электродной промышленности. 1 з.п. ф-лы, 3 ил., 9 пр.
Реферат Свернуть Развернуть

Изобретение относится к нефтеперерабатывающей промышленности и комбинированным способам получения топлив для судовых двигателей и нефтяного электродного кокса процессами замедленного коксования и висбрекинга тяжелых нефтяных остатков.

Известно судовое высоковязкое топливо (патент РФ №1672731, опубл. 10.05.1995 г.) на основе прямогонного гудрона и мазута, а также остатков и дистиллятов вторичных процессов глубокой переработки нефти (каталитического крекинга, термического крекинга, или висбрекинга, или коксования, а также деасфальтизации), взятых в соотношении, мас.%:

Мазут 20-40
Газойль каталитического крекинга 5-20
Фр. 180-500°C вторичных процессов
и/или фр. 200-480°C крекинг-флегмы 5-15
Фр. 450°C - к.к. остатка термических процессов
или фр. 520°C - к.к. остатка деасфальтизации 20-60
Гудрон До 100

Недостатком технологии производства является многокомпонентность, используемых в качестве компонентов продуктов процессов термического крекинга, или висбрекинга, или коксования. Количество тяжелых нефтяных остатков достигает 65-90%, в том числе до 20-40% потенциального сырья для выделения светлых нефтепродуктов - прямогонного мазута, а также широкие пределы кипения 180-500°C вторичных дистиллятов обуславливают низкую стабильность топлива к расслоению на фазы при длительном хранении и эксплуатации, неполноту сгорания и плохие экологические характеристики. К недостаткам известного состава также относится высокое содержание сернистых соединений (2,25-2,95%).

Известно судовое топливо (патент РФ №2155211, опубл. 27.08.2000 г.), которое получают на основе остаточной нефтяной фракции - смеси прямогонного мазута и полугудрона с добавлением дизельного топлива, легкого газойля каталитического крекинга и депрессорной присадки, гидроочищенного дизельного топлива, широкой вакуумной фракции 260-510°C или продуктов висбрекинга полугудрона и широкой вакуумной фракции 260-510°C при следующем массовом соотношении компонентов:

Полутудрон 5-30
Широкая вакуумная фракция 260-510°C
или продукты висбрекинга полугудрона
и широкой вакуумной фракции 260-510°C До 25
Легкий газойль каталитического крекинга 20-25
Гидроочищенное дизельное топливо 15-40
Депрессорная присадка До 0,05
Прямогонный мазут До 100

Недостатком данной технологии получения судового остаточного топлива является добавление в качестве обязательного компонента до 15-40% гидроочищенной дизельной фракции, являющейся дефицитной и используемой для производства дизельных топлив для наземной техники, дизель-генераторов и дизель-насосов и дистиллятных судовых топлив. Также недостатком является использование прямогонного мазута, с невыделенными фракциями светлых нефтепродуктов, фактически от 15 до 45%.

Известен состав судового высоковязкого топлива (патент РФ №2084494, опубл. 20.07.1997 г.), содержащего: мазут, остаток ректификации 200°C - к.к. смеси ловушечной нефти и нефтешлама после двухступенчатого обезвоживания и смесь ловушечной нефти и нефтешлама после трехступенчатого обезвоживания, берущегося при следующем массовом соотношении компонентов:

Остаток ректификации 200°C - к.к. 12,5-25,0
Смесь ловушечной нефти и нефтешлама
после трехступенчатого обезвоживания 12,5-25,0
Мазут 50,0-75,0

Недостатком данного состава судового топлива является его низкие показатели качества, такие как: температура застывания (3-7°C), плохая прокачиваемость топлива. Применение ловушечных нефтепродуктов, содержащих значительное количество примесей, в том числе ванадия, приводит к высокотемпературной коррозии, а также к значительному увеличению зольности, отложению солей металлов на поверхности нагрева котлов.

Известно судовое высоковязкое топливо для среднеоборотных и малооборотных судовых дизелей (варианты) (патент РФ №2079542, опубл. 20.05.1997 г.), включающий в использование в качестве компонентов углеводородную дистиллятную фракцию прямой перегонки нефти 350-500°C и депрессорную добавку на основе остатка термического крекинга.

Недостатком предложенного состава судового топлива является использование в качестве депрессорной добавки остатка термического крекинга, который не вырабатывается на современных нефтеперерабатывающих предприятиях ввиду отсутствия установок термического крекинга, без которых невозможно получить судовое высоковязкое топливо на основе фракции 350-500°C прямой перегонки нефти.

Известно судовое высоковязкое топливо (патент РФ №2177979, опубл. 10.01.2002 г.), принятое за прототип, на базе гудрона и газойлей замедленного коксования. Процесс получения судового топлива по известному способу осуществляется следующим образом: предварительно подогретые до 30-50°C компоненты топлива смешиваются друг с другом при помощи механической мешалки в течение 30-60 мин. Вследствие протекающих в процессе перемешивания процессов растворения смолисто-асфальтовых веществ ароматическими углеводородами образуется устойчивая мелкодисперсная коллоидная система. Исходные компоненты смешиваются в следующем массовом соотношении (мас.%):

Легкий газойль коксования 20-40
Тяжелый газойль коксования 5-20
Экстракт селективной очистки 15-30
Смола полиалкилбензольная 1-5
Гудрон До 100

Недостатком данной технологии является высокое содержание дистиллятных фракций, количество которых вместе с экстрактами селективной очистки масел достигает 40-90%. Ограниченное количество используемого гудрона делает невозможным получение высоковязких топлив тяжелых марок. Высокое содержание серы в топливе (1,91-2,00%) ведет к увеличению выбросов ее оксидов при сгорании в атмосферу. Использование полиалкилбензольной смолы (ПАБ), являющейся побочным продуктом нефтехимического производства, отсутствующего на крупных НПЗ, приводит к ухудшению растворимости смолисто-асфальтеновых веществ гудрона в дистиллятах.

Техническим результатом является получение судового высоковязкого топлива и нефтяного электродного кокса процессом замедленного коксования тяжелых нефтяных остатков.

Технический результат достигается тем, что при атмосферно-вакуумной перегонке нефти выделяют: фракцию вакуумного газойля, 95% которой выкипает от 350 до 500°C и гудрон - фракцию, выкипающую выше 500°C, при этом каталитическому крекингу подвергают фракцию вакуумного газойля от 350 до 500°C, предварительно подвергнутую каталитической гидроочистке, с выделением тяжелого газойля каталитического крекинг от 180 до 400°C, висбрекингу - гудрон с выделением висбрекинг-остатка, а замедленному коксованию - смесь гудрона и тяжелого газойля каталитического крекинга, взятых в массовом соотношении 70-90:10-30, с выделением из продуктов реакций легких газойлевых фракций от 180 до 360°C и тяжелых газойлевых фракций от 360 до 450°C, а также нефтяного электродного кокса - твердого продукта реакций уплотнения и термополиконденсации, и последующим компаундированием висбрекинг-остатка (ВО) и легкого газойля замедленного коксования (ЛГЗК) от 180 до 360°C для получения судового высоковязкого топлива, взятых в их массовом соотношении:

Висбрекинг-остаток 10-70
Легкий газойль замедленного коксования 30-90

Компаундированием висбрекинг-остатка (ВО) и тяжелого газойля замедленного коксования (ТГЗК) от 360 до 450°C, взятых в их массовом соотношении получают судовое высоковязкое топливо:

Висбрекинг-остаток 20-60
Тяжелый газойль замедленного коксования 40-80

Способ поясняется следующими чертежами:

фиг. 1 - физико-химические характеристики базовых компонентов судовых высоковязких топлив по предлагаемому изобретению;

фиг. 2 - компонентный состав и свойства судовых высоковязких топлив по прототипу и предлагаемому изобретению;

фиг. 3 - показатели качества нефтяного электродного кокса по нормам и предлагаемому изобретению.

Способ осуществляется следующим образом.

Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением фракции вакуумного газойля, 95% которого выкипает в пределах 180-360°C, выделяют гудрон - остаток вакуумной перегонки нефти, выкипающий выше 500°C и подвергают процессу висбрекинга с выделением висбрекинг-остатка, а также выделяют фракцию вакуумного газойля 350-500°C, каталитически гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций газойлевой фракции 180-400°C. Гудрон смешивают с газойлевой фракцией 180-400°C в массовом соотношении 70-90:10-30, и подвергают замедленному коксованию, с выделением из продуктов реакций газойлевых фракций 180-360°C и 360-450°C. Полученные фракции ВО (висбрекинг-остаток) и ЛГЗК (легкий газойль замедленного коксования) (фиг. 1) смешивают в массовом соотношении (мас.%):

Висбрекинг-остаток 10-70
Легкий газойль замедленного коксования 30-90,

обеспечивая получение судового высоковязкого топлива различных марок (фиг. 2).

Полученные фракции ВО (висбрекинг-остаток) и ТГЗК (тяжелый газойль замедленного коксования) (фиг. 1) смешивают в массовом соотношении (мас. %):

Висбрекинг-остаток 20-60
Тяжелый газойль замедленного коксования 40-80,

обеспечивая получение судового высоковязкого топлива различных марок (фиг. 2).

Нефтяной электродный кокс - твердый углеродистый продукт реакций уплотнения и термополиконденсации получают при замедленном коксовании с заданными показателями качества (фиг. 3).

Из представленных данных видно, что предлагаемый способ комбинированного получения судового высоковязкого топлива для малооборотных и среднеоборотных судовых дизелей и энергетических установок позволяет не использовать труднодоступный компонент - полиалкилбензольную смолу. При получении судового высоковязкого топлива по предлагаемой технологии наиболее полно используются ресурсы тяжелого газойля замедленного коксования (40-80%). При получении судового высоковязкого топлива по предлагаемой технологии также получают нефтяной электродный кокс высокого качества - с низким содержанием серы и ванадия для нужд электродной и других отраслей промышленности.

Способ поясняется следующими примерами.

Пример 1. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций тяжелой газойлевой фракции 180-400°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 70-90:10-30 подвергают замедленному коксованию, с выделением тяжелого газойля замедленного коксования 360-450°C и нефтяного электродного кокса и последующим компаундированием висбрекинг-остатка и тяжелого газойля замедленного коксования 360-450°C в соотношении 20:80мас.%

Полученная в данном соотношении (20:80) базовая смесь ВО и ТГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 2. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций тяжелой газойлевой фракции 180-400°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 30:70 мас.%

Полученная в данном соотношении (30:70) базовая смесь ВО и ТГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 3. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций тяжелой газойлевой фракции 180-400°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 40:60мас.%

Полученная в данном соотношении (40:60) базовая смесь ВО и ТГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВТ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 4. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций тяжелой газойлевой фракции 180-400°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 50:50 мас.%

Полученная в данном соотношении (50:50) базовая смесь ВО и ТГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВС (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 5. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций тяжелой газойлевой фракции 180-400°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 60:40 мас.%

Полученная в данном соотношении (60:40) базовая смесь ВО и ТГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВС (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 6. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций легкой газойлевой фракции 180-360°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 10:90 мас.%

Полученная в данном соотношении (10:90) базовая смесь ВО и ЛГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 7. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций легкой газойлевой фракции 180-360°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 30:70 мас.%

Полученная в данном соотношении (30:70) базовая смесь ВО и ЛГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 8. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций легкой газойлевой фракции 180-360°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 50:50 мас.%

Полученная в данном соотношении (50:50) базовая смесь ВО и ЛГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Пример 9. Нефть на установке АВТ (AT и ВТ) подвергают перегонке с выделением: гудрона - остатка, выкипающего выше 500°C, подвергаемого висбрекингу с выделением висбрекинг-остатка; вакуумной газойлевой фракции, 95% которой выкипает в пределах 350-500°C, которую гидроочищают и подвергают каталитическому крекингу, с выделением из продуктов реакций легкой газойлевой фракции 180-360°C. Гудрон в смеси с тяжелым газойлем каталитического крекинга 180-400°C в соотношении 70:30 мас.%

Полученная в данном соотношении (70:30) базовая смесь ВО и ЛГЗК по физико-химическим показателям отвечает предъявляемым требованиям к судовому высоковязкому топливу марки СВЛ (фиг. 2). Нефтяной электродный кокс также отвечает выдвигаемым требованиям по всем показателям качества (фиг. 3).

Предлагаемая технология комбинированного способа получения судовых высоковязких топлив для малооборотных и среднеоборотных судовых дизельных и энергетических установок, а также нефтяного электродного кокса найдет широкое применение для производства на НПЗ с глубокой переработкой нефтяного сырья.


КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА
КОМБИНИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ СУДОВЫХ ВЫСОКОВЯЗКИХ ТОПЛИВ И НЕФТЯНОГО КОКСА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 213.
25.08.2017
№217.015.96a2

Стенд для исследования энергообмена при сдвиге

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002608695
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9898

Способ получения высокооктановых компонентов из олефинов каталитического крекинга

Настоящее изобретение относится к вариантам способа получения высокооктанового компонента моторных топлив из олефинсодержащих смесей. Один из вариантов способа заключается в том, что олефинсодержащую смесь подвергают окислению закисью азота с последующим выделением смеси продуктов в качестве...
Тип: Изобретение
Номер охранного документа: 0002609264
Дата охранного документа: 31.01.2017
25.08.2017
№217.015.a4e9

Способ повышения стабильности кислородсодержащих компонентов моторного топлива и регулирования содержания в них кислорода

Изобретение описывает способ регулирования содержания кислорода в высокооктановом компоненте моторного топлива на основе карбонильных соединений общей формулы, где R - Н, либо алкоксид -O-CH, либо углеводородный радикал общей формулы -CH; R - углеводородный радикал общей формулы -CH; n - число...
Тип: Изобретение
Номер охранного документа: 0002607902
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a54d

Способ переработки железомарганцевых конкреций

Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений. Способ включает операции измельчения, сульфатизирующего обжига и выщелачивания огарка. При этом обжиг осуществляют...
Тип: Изобретение
Номер охранного документа: 0002607873
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.a574

Катализатор и способ гидрооблагораживания дизельных дистиллятов

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса...
Тип: Изобретение
Номер охранного документа: 0002607925
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a73d

Комплекс пылеподавления площадных источников

Изобретение относится к средствам экологической защиты окружающей среды, именно к устройствам пылеподавления, может быть использовано для обеспыливания, орошения площадных источников пылевыделения, а также для обеспыливания поступающего с источника запыленного воздуха, где требуется применение...
Тип: Изобретение
Номер охранного документа: 0002608089
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.ab31

Адаптивная система управления

Адаптивная система управления содержит объект управления, сумматор, регулятор, идентификатор, дигратор, соединенные определенным образом. Обеспечивается автоматическая настройка регулятора без возбуждающих управляющих воздействий, подаваемых на объект управления. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002612340
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ab36

Стенд для физического моделирования геомеханических процессов

Изобретение относится к испытательной технике, а именно к устройствам для моделирования физических процессов в нагруженном массиве горных пород на образцах в лабораторных условиях. Стенд содержит корпус для размещения испытуемого образца, размещенные в корпусе штампы для взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002612198
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ab42

Способ флотационного извлечения редких металлов

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в горно-обогатительной промышленности при обогащении редких металлов. Способ флотационного извлечения редких металлов включает предварительное измельчение и последующую флотацию, протекающую под...
Тип: Изобретение
Номер охранного документа: 0002612162
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab48

Способ разложения алюминатных растворов

Изобретение может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов. Разложение алюминатного раствора выполняют путём карбонизации газами, содержащими СО, при температуре от 20 до 40°С при начальной концентрации каустической щёлочи в растворе...
Тип: Изобретение
Номер охранного документа: 0002612288
Дата охранного документа: 06.03.2017
Показаны записи 21-30 из 104.
25.08.2017
№217.015.96a2

Стенд для исследования энергообмена при сдвиге

Изобретение относится к испытательной технике, к устройствам для испытания материалов, в частности горных пород, при исследовании энергообмена в массиве горных пород с целью прогноза и предотвращения опасных динамических явлений. Стенд содержит опорную раму, размещенные в ней захват для образца...
Тип: Изобретение
Номер охранного документа: 0002608695
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9898

Способ получения высокооктановых компонентов из олефинов каталитического крекинга

Настоящее изобретение относится к вариантам способа получения высокооктанового компонента моторных топлив из олефинсодержащих смесей. Один из вариантов способа заключается в том, что олефинсодержащую смесь подвергают окислению закисью азота с последующим выделением смеси продуктов в качестве...
Тип: Изобретение
Номер охранного документа: 0002609264
Дата охранного документа: 31.01.2017
25.08.2017
№217.015.a4e9

Способ повышения стабильности кислородсодержащих компонентов моторного топлива и регулирования содержания в них кислорода

Изобретение описывает способ регулирования содержания кислорода в высокооктановом компоненте моторного топлива на основе карбонильных соединений общей формулы, где R - Н, либо алкоксид -O-CH, либо углеводородный радикал общей формулы -CH; R - углеводородный радикал общей формулы -CH; n - число...
Тип: Изобретение
Номер охранного документа: 0002607902
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a54d

Способ переработки железомарганцевых конкреций

Изобретение относится к цветной металлургии, в частности к переработке железомарганцевых конкреций для получения кобальта, меди, никеля, марганца, других металлов и их соединений. Способ включает операции измельчения, сульфатизирующего обжига и выщелачивания огарка. При этом обжиг осуществляют...
Тип: Изобретение
Номер охранного документа: 0002607873
Дата охранного документа: 20.01.2017
25.08.2017
№217.015.a574

Катализатор и способ гидрооблагораживания дизельных дистиллятов

Изобретение относится к катализаторам гидрооблагораживания дизельных дистиллятов и способу гидрооблагораживания дизельных дистиллятов с целью получения экологически чистых дизельных топлив и может быть использовано в нефтеперерабатывающей промышленности. Описан катализатор для процесса...
Тип: Изобретение
Номер охранного документа: 0002607925
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a73d

Комплекс пылеподавления площадных источников

Изобретение относится к средствам экологической защиты окружающей среды, именно к устройствам пылеподавления, может быть использовано для обеспыливания, орошения площадных источников пылевыделения, а также для обеспыливания поступающего с источника запыленного воздуха, где требуется применение...
Тип: Изобретение
Номер охранного документа: 0002608089
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.ab31

Адаптивная система управления

Адаптивная система управления содержит объект управления, сумматор, регулятор, идентификатор, дигратор, соединенные определенным образом. Обеспечивается автоматическая настройка регулятора без возбуждающих управляющих воздействий, подаваемых на объект управления. 2 ил.
Тип: Изобретение
Номер охранного документа: 0002612340
Дата охранного документа: 07.03.2017
25.08.2017
№217.015.ab36

Стенд для физического моделирования геомеханических процессов

Изобретение относится к испытательной технике, а именно к устройствам для моделирования физических процессов в нагруженном массиве горных пород на образцах в лабораторных условиях. Стенд содержит корпус для размещения испытуемого образца, размещенные в корпусе штампы для взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002612198
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ab42

Способ флотационного извлечения редких металлов

Изобретение относится к области обогащения полезных ископаемых и может быть использовано в горно-обогатительной промышленности при обогащении редких металлов. Способ флотационного извлечения редких металлов включает предварительное измельчение и последующую флотацию, протекающую под...
Тип: Изобретение
Номер охранного документа: 0002612162
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ab48

Способ разложения алюминатных растворов

Изобретение может быть использовано при переработке низкокачественного алюминийсодержащего сырья, в том числе нефелинов. Разложение алюминатного раствора выполняют путём карбонизации газами, содержащими СО, при температуре от 20 до 40°С при начальной концентрации каустической щёлочи в растворе...
Тип: Изобретение
Номер охранного документа: 0002612288
Дата охранного документа: 06.03.2017
+ добавить свой РИД