×
13.01.2017
217.015.8343

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ

Вид РИД

Изобретение

№ охранного документа
0002601382
Дата охранного документа
10.11.2016
Аннотация: Изобретение относится к области измерительной техники, предназначено для определения расхода среды в круглых трубопроводах при стабилизированном течении. Способ определения расхода в трубопроводах включает измерение скорости потока в двух характерных точках по сечению трубы и определение расхода по результатам этих измерений. Отличительной особенностью способа является то, что дополнительно измеряют скорость среды в какой-либо точке потока по сечению трубы, определяют на основе единого универсального логарифмического профиля U=Аln(х)+В значения коэффициентов А и В для каждой пары известных значений координат (расстояний от стенки трубы) точек измерения скорости и измеренных значений скорости в этих точках (, ) и (, ), вычисляют относительные разности значений коэффициентов A и B и (верхние индексы обозначают значения коэффициентов A и B, вычисленные для различных пар значений координата-скорость), при условии, что величины и для каждой пары значений A и B не превышают наперед заданного значения ε, определяют расход теплоносителя по зависимости: где r=r-х - расстояние от центра трубы; r - радиус трубы; х - расстояние от стенки трубы; - среднее значение коэффициентов A; - среднее значение коэффициентов B; n=3; κ - постоянная Кармана; ν - кинематическая вязкость среды; δ - толщина вязкого подслоя. Технический результат - повышение точности. 1 ил., 1 табл.

Изобретение относится к области измерительной техники, предназначено для определения расхода среды при стабилизированном течении в круглых трубопроводах.

Известен способ определения расхода среды датчиком скорости, заключающийся в том, что устанавливают в характерную точку (точка, где U=Uмакс, центр трубы) по сечению трубы датчик скорости, определяют скорость теплоносителя в точке установки датчика Uизм, определяют расход теплоносителя Q=kvUизмFтр, где kv - предварительно заданный коэффициент расхода, kv=Uср/Uизм (Расход жидкости и газа. Методика выполнения измерений по скорости в одной точке сечения трубы. ГОСТ 8.361-79 [1]).

Основным недостатком данного способа является то, что для определения расхода необходимо знать величину kv. Коэффициент расхода kv в значительной мере зависит от коэффициента шероховатости ξ. В зависимости от ξ расхождение в значениях kv может доходить до 6-7% (П.В. Лобачев, Ф.А. Шевелев. Измерение расхода жидкости и газов в системах водоснабжения и канализации. Изд. 2-е, переработанное и дополненное. Москва: Стройиздат, 1985 [2]).

Наиболее близким по технической сущности и достигаемому результату является способ определения расхода в трубопроводах, заключающийся в том, что устанавливают в характерные точки по сечению трубы два датчика скорости, измеряют скорость теплоносителя в точках установки датчиков Uизм, определяют расход теплоносителя Q. В качестве характерных точек принята точка замера скорости в центре трубы и точка на расстоянии 0,95 радиуса от оси трубопровода (а.с. 1800274 СССР, МКИ3 G01F 1/00. Способ определения расхода в трубопроводах / Е.Ф. Авдеев, В.И. Белозеров, B.C. Кузеванов, А.И. Грошев // Заявка №4836936/10 от 08.06.90. Открытия. Изобретения. 1993. №9 [3]).

Недостатки способа:

1. Для определения расхода необходимо знать шероховатость стенки трубопровода. Как правило, реальная величина шероховатости не известна. В связи с этим, точность вычисления расхода является величиной неопределенной.

2. Одна из характерных точек, в которой определяется скорость потока, выбрана неудачно. Вблизи стенки датчиками скорости, которые представлены в описании изобретения, измерить скорость с удовлетворительной точностью очень сложно.

С целью устранения указанных недостатков предлагается способ определения расхода среды в круглых трубопроводах при стабилизированном течении, заключающийся в измерениях скорости потока в двух точках по сечению трубы и определении расхода среды Q по результатам этих измерений, отличающийся тем, что дополнительно измеряют скорость среды в какой-либо точке потока по сечению трубы, определяют на основе единого универсального логарифмического профиля U=Akln(х)+Bk значения коэффициентов и для каждой пары известных значений координат (расстояний от стенки трубы) точек измерения скорости и измеренных значений скорости в этих точках и , вычисляют относительные разности значений коэффициентов Ak и Bk и (верхние индексы обозначают значения коэффициентов Ak и Bk, вычисленные для различных пар значений координата-скорость), при условии, что величины и для каждой пары значений Ak и Bk не превышают наперед заданного значения ε, определяют расход теплоносителя по зависимости:

где r=r0-х - расстояние от центра трубы;

r0 - радиус трубы;

х - расстояние от стенки трубы;

- среднее значение коэффициентов Ak;

- среднее значение коэффициентов Bk;

n=3;

κ - постоянная Кармана;

ν - кинематическая вязкость среды;

δв - толщина вязкого подслоя.

Технический результат, на достижение которого направлено изобретение, заключается в повышении точности определения расхода среды, что обеспечивается тем, что дополнительно измеряют скорость среды в какой-либо точке потока по сечению трубы, определяют на основе единого универсального логарифмического профиля U=Akln(x)+Bk значения коэффициентов и для каждой пары известных значений координат (расстояний от стенки трубы) точек измерения скорости и измеренных значений скорости в этих точках и , вычисляют относительные разности значений коэффициентов Ak и Bk и (верхние индексы обозначают значения коэффициентов Ak и Bk, вычисленные для различных пар значений координата-скорость), при условии, что величины и для каждой пары значений Ak и Bk не превышают наперед заданного значения ε, определяют расход теплоносителя по зависимости:

где r=r0-х - расстояние от центра трубы;

r0 - радиус трубы;

х - расстояние от стенки трубы;

- среднее значение коэффициентов Ak;

- среднее значение коэффициентов Bk;

n=3;

κ - постоянная Кармана;

ν - кинематическая вязкость среды;

δв - толщина вязкого подслоя.

Достижение технического результата обеспечивается за счет введения единого универсального профиля скорости U=Akln(х)+Bk, описывающего распределение скоростей турбулентного течения в круглой трубе во всех режимах турбулентного течения, от режима гидродинамически гладких труб до режима квадратичного закона сопротивления (режим полного проявления шероховатости).

На основе анализа классических экспериментальных данных Никурадзе (Nikuradse J., Laws of turbulent flow in smooth pipes. - NASA TT F-10, 359. - Translation of VDI-Forschungsheft No. 356. - 1966 [4], и Nikuradse J., Laws of Flow in rough pipes. - NACA TM 1292. - Translation of VDI-Forschungsheft No. 361. - 1950 [5]) удалось показать, что методика, основанная на универсальном логарифмическом профиле, позволяет получить полное математическое описание профиля скорости в трубе даже в случае отсутствия априорных предположений о режиме течения и, следовательно, о физических значениях входящих в соответствующую формулу коэффициентов, в том числе и шероховатости стенки трубы. Коэффициент Bk включает в себя различные комбинации физических параметров (шероховатость стенки, вязкость среды и т.п.). Коэффициент Ak однозначно связан с динамической скоростью

Достижение технического результата обеспечивается также за счет того, что определяют значения коэффициентов Ak и Bk для каждой пары известных значений координат характерных точек и измеренных значений скоростей в этих точках и , вычисляют относительные разности значений коэффициентов Ak и Bk и (верхние индексы обозначают значения коэффициентов Ak и Bk, вычисленные для различных пар значений координата-скорость), сравнивают величины , с наперед заданной величиной ε. Выполнение условия , означает, что измеренные значения скоростей в характерных точках описываются универсальным логарифмическом профилем. Последнее означает, что профиль скорости в трубе стабилизированный и для определения расхода возможно использовать зависимость (2). В противном случае для определения расхода необходимо использовать другие подходы.

Расход теплоносителя определяется следующим образом

1. Устанавливают по сечению трубы три датчика скорости. В качестве таковых приняты следующие точки:

(центр трубы), , , где r0 - радиус трубы.

2. Определяют скорости теплоносителя в точках установки датчиков скорости , , .

3. Определяют на основе единого универсального логарифмического профиля U=Akln(x)+Bk значения коэффициентов Ak и Bk

где i, j, k=1, 2, 3.

4. Вычисляют величины и для каждой пары значений Ak и Bk. Сравнивают полученные значения и с наперед заданным значением ε. В качестве ε принимают малую величину 0,01÷0,001.

5. При соблюдении условия , определяют расход теплоносителя на основе зависимости (2)

где r=r0-х - расстояние от центра трубы;

r0 - радиус трубы;

х - расстояние от стенки трубы;

- среднее значение коэффициентов Ak;

- среднее значение коэффициентов Bk;

n=3;

κ - постоянная Кармана;

ν - кинематическая вязкость среды;

δв - толщина вязкого подслоя.

Пример конкретного выполнения

Для проверки предлагаемого способа определения расхода были взяты классические опыты Никурадзе (Nikuradse J., Laws of turbulent flow in smooth pipes. - NASA TT F-10, 359. - Translation of VDI-Forschungsheft No. 356. - 1966 [4], и Nikuradse J., Laws of Flow in rough pipes. - NACA TM 1292. - Translation of VDI-Forschungsheft No. 361. - 1950 [5]). В этих опытах измерялся профиль скорости трубкой Пито-Прандтля, одновременно измерялся расход. При определении расхода среды по предлагаемому методу в качестве характерных выбирались три точки, показанные на фиг. 1 темным цветом. Параметры движения среды в вязком подслое в расчетах не учитывались. В качестве верхнего предела первого интеграла по радиальной координате из формулы (4) принималась величина r0 - 0,001r0. Полученные результаты представлены в Таблице 1.

На фиг. 1 показаны профили скорости, полученные по предлагаемой методике. Расчетные профили очень хорошо совпадают с экспериментальными данными в широком диапазоне числа Рейнольдса.

Выполненные расчеты показали, что на основе предлагаемого способа возможно с высокой точностью определять расход теплоносителя во всех режимах турбулентного течения, от режима гидродинамически гладких труб до режима квадратичного закона сопротивления (режим полного проявления шероховатости). Для гидродинамически гладких труб полученные ошибки не превысили 1%. Для шероховатых труб максимальная ошибка составила 2%. Средняя ошибка по набору использованных в расчетах данных составила 0,7%.

Источники информации

1. Расход жидкости и газа. Методика выполнения измерений по скорости в одной точке сечения трубы. ГОСТ 8.361-79.

2. П.В. Лобачев, Ф.А. Шевелев. Измерение расхода жидкости и газов в системах водоснабжения и канализации. Изд. 2-е, переработанное и дополненное. Москва: Стройиздат, 1985.

3. А.с. 1800274 СССР, МКИ3 G01F 1/00. Способ определения расхода в трубопроводах / Е.Ф. Авдеев, В.И. Белозеров, B.C. Кузеванов, А.И. Грошев // Заявка №4836936/10 от 08.06.90. Открытия. Изобретения. 1993. №9.

4. Nikuradse J., Laws of turbulent flow in smooth pipes. - NASA TT F-10, 359. - Translation of VDI-Forschungsheft No. 356. - 1966.

5. Nikuradse J., Laws of Flow in rough pipes. - NACA TM 1292. - Translation of VDI-Forschungsheft No. 361. - 1950.

Способ определения расхода среды в круглых трубопроводах при стабилизированном течении, заключающийся в измерениях скорости потока в двух точках по сечению трубы и определении расхода теплоносителя Q по результатам этих измерений, отличающийся тем, что дополнительно измеряют скорость среды в какой-либо точке потока по сечению трубы, определяют на основе единого универсального логарифмического профиля U(x)=Aln(х)+B значения коэффициентов и для каждой пары известных значений координат (расстояний от стенки трубы) точек измерения скорости и измеренных значений скорости в этих точках и , вычисляют относительные разности значений коэффициентов A и B и (верхние индексы обозначают значения коэффициентов A и B, вычисленные для различных пар значений координата-скорость), при условии, что величины и для каждой пары значений A и B не превышают наперед заданного значения ε, определяют расход теплоносителя по зависимости: где r=r-х - расстояние от центра трубы;х - расстояние от стенки трубы; - среднее значение коэффициентов A; - среднее значение коэффициентов B;n=3;κ - постоянная Кармана;ν - кинематическая вязкость среды;δ - толщина вязкого подслоя.
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА СРЕДЫ В КРУГЛЫХ ТРУБОПРОВОДАХ ПРИ СТАБИЛИЗИРОВАННОМ ТЕЧЕНИИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
10.01.2013
№216.012.19df

Шариковый преобразователь расхода

Изобретение относится к области расходометрии и может быть использовано для определения расхода жидкости, например, в ядерных энергетических установках. Сущность: шариковый преобразователь расхода содержит корпус (1), в котором установлена втулка (2) с элементами (3), например лопастями,...
Тип: Изобретение
Номер охранного документа: 0002472115
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2125

Технологический пароперегревательный канал прямоточного водо-водяного ядерного реактора

Изобретение относится к ядерной технике, а более конкретно к технологическим испарительно-пароперегревательным каналам прямоточного водо-водяного ядерного реактора, и позволяет расширить функциональные возможности путем интенсификации теплообмена и повысить стабильность работы канала. Канал...
Тип: Изобретение
Номер охранного документа: 0002473986
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2129

Пакетная тепловыделяющая сборка с шаровыми твэлами

Изобретение относится к области ядерной техники. Пакетная тепловыделяющая сборка с шаровыми твэлами 1 содержит коллектор 2 подвода и коллектор 3 отвода теплоносителя, силовую штангу 4 для установки и извлечения тепловыделяющей сборки из корпуса реактора, размещенную по оси симметрии сборки,...
Тип: Изобретение
Номер охранного документа: 0002473990
Дата охранного документа: 27.01.2013
10.10.2013
№216.012.73fa

Способ теплосъема с поверхности тепловыделяющих элементов

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например в ядерных энергетических установках. В способе теплосъема с поверхности тепловыделяющих элементов, заключающемся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего...
Тип: Изобретение
Номер охранного документа: 0002495347
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9f84

Способ определения уровня раздела фаз в каналах

Изобретение относится к измерительной технике и может быть использовано при определении раздела фаз в парогенерирующих установках. Способ заключается в том, что устанавливают датчик, выполненный, например, в виде электропроводной проволоки, в канале по направлению силы тяжести нагревают датчик...
Тип: Изобретение
Номер охранного документа: 0002506544
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ad9f

Трубчатый электронагреватель

Изобретение относится к электротехнике, в частности к устройствам преобразования электрической энергии в тепловую, и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя за счет увеличения теплопроводности в направлении от тепловыделяющего элемента к поверхности...
Тип: Изобретение
Номер охранного документа: 0002510162
Дата охранного документа: 20.03.2014
20.05.2014
№216.012.c447

Трубчатый электронагреватель

Изобретение относится к электротехнике и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя. Трубчатый электронагреватель содержит тепловыделяющий элемент 1, например, в виде токопроводящей спирали, расположенный внутри защитной металлической оболочки 2, имеющей...
Тип: Изобретение
Номер охранного документа: 0002516006
Дата охранного документа: 20.05.2014
10.03.2015
№216.013.2f6d

Интенсификатор теплоотдачи

Изобретение относится к ядерной технике, в частности к конструкциям стержневых тепловыделяющих элементов (твэлов), предполагающих наличие в своем составе устройств и средств для интенсификации теплообмена с поверхности твэла, и может быть использовано, в частности, в действующих реакторах...
Тип: Изобретение
Номер охранного документа: 0002543609
Дата охранного документа: 10.03.2015
13.01.2017
№217.015.7422

Способ определения расхода теплоносителя датчиками скорости

Изобретение относится к области измерительной техники, предназначено для определения расхода теплоносителя. Отличительной особенностью способа определения расхода теплоносителя датчиками скорости является то, что дополнительно устанавливают по крайней мере один датчик скорости, определяют...
Тип: Изобретение
Номер охранного документа: 0002597673
Дата охранного документа: 20.09.2016
20.02.2019
№219.016.bc0e

Способ повышения теплосъема на выпуклых теплоотдающих поверхностях теплопередающих устройств и устройство для его осуществления

Изобретение относится к энергетике и может быть использовано в теплопередающих устройствах, например в ядерных энергетических установках. Изобретение заключается в том, что в устройстве для повышения теплосъема на выпуклых теплоотдающих поверхностях, содержащем верхнее закручивающее устройство,...
Тип: Изобретение
Номер охранного документа: 0002680175
Дата охранного документа: 18.02.2019
Показаны записи 1-10 из 13.
10.01.2013
№216.012.19df

Шариковый преобразователь расхода

Изобретение относится к области расходометрии и может быть использовано для определения расхода жидкости, например, в ядерных энергетических установках. Сущность: шариковый преобразователь расхода содержит корпус (1), в котором установлена втулка (2) с элементами (3), например лопастями,...
Тип: Изобретение
Номер охранного документа: 0002472115
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.2125

Технологический пароперегревательный канал прямоточного водо-водяного ядерного реактора

Изобретение относится к ядерной технике, а более конкретно к технологическим испарительно-пароперегревательным каналам прямоточного водо-водяного ядерного реактора, и позволяет расширить функциональные возможности путем интенсификации теплообмена и повысить стабильность работы канала. Канал...
Тип: Изобретение
Номер охранного документа: 0002473986
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2129

Пакетная тепловыделяющая сборка с шаровыми твэлами

Изобретение относится к области ядерной техники. Пакетная тепловыделяющая сборка с шаровыми твэлами 1 содержит коллектор 2 подвода и коллектор 3 отвода теплоносителя, силовую штангу 4 для установки и извлечения тепловыделяющей сборки из корпуса реактора, размещенную по оси симметрии сборки,...
Тип: Изобретение
Номер охранного документа: 0002473990
Дата охранного документа: 27.01.2013
10.10.2013
№216.012.73fa

Способ теплосъема с поверхности тепловыделяющих элементов

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например в ядерных энергетических установках. В способе теплосъема с поверхности тепловыделяющих элементов, заключающемся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего...
Тип: Изобретение
Номер охранного документа: 0002495347
Дата охранного документа: 10.10.2013
10.02.2014
№216.012.9f84

Способ определения уровня раздела фаз в каналах

Изобретение относится к измерительной технике и может быть использовано при определении раздела фаз в парогенерирующих установках. Способ заключается в том, что устанавливают датчик, выполненный, например, в виде электропроводной проволоки, в канале по направлению силы тяжести нагревают датчик...
Тип: Изобретение
Номер охранного документа: 0002506544
Дата охранного документа: 10.02.2014
20.03.2014
№216.012.ad9f

Трубчатый электронагреватель

Изобретение относится к электротехнике, в частности к устройствам преобразования электрической энергии в тепловую, и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя за счет увеличения теплопроводности в направлении от тепловыделяющего элемента к поверхности...
Тип: Изобретение
Номер охранного документа: 0002510162
Дата охранного документа: 20.03.2014
20.05.2014
№216.012.c447

Трубчатый электронагреватель

Изобретение относится к электротехнике и позволяет повысить ресурс и эксплуатационную надежность трубчатого нагревателя. Трубчатый электронагреватель содержит тепловыделяющий элемент 1, например, в виде токопроводящей спирали, расположенный внутри защитной металлической оболочки 2, имеющей...
Тип: Изобретение
Номер охранного документа: 0002516006
Дата охранного документа: 20.05.2014
10.03.2015
№216.013.2f6d

Интенсификатор теплоотдачи

Изобретение относится к ядерной технике, в частности к конструкциям стержневых тепловыделяющих элементов (твэлов), предполагающих наличие в своем составе устройств и средств для интенсификации теплообмена с поверхности твэла, и может быть использовано, в частности, в действующих реакторах...
Тип: Изобретение
Номер охранного документа: 0002543609
Дата охранного документа: 10.03.2015
13.01.2017
№217.015.7422

Способ определения расхода теплоносителя датчиками скорости

Изобретение относится к области измерительной техники, предназначено для определения расхода теплоносителя. Отличительной особенностью способа определения расхода теплоносителя датчиками скорости является то, что дополнительно устанавливают по крайней мере один датчик скорости, определяют...
Тип: Изобретение
Номер охранного документа: 0002597673
Дата охранного документа: 20.09.2016
20.02.2019
№219.016.bc0e

Способ повышения теплосъема на выпуклых теплоотдающих поверхностях теплопередающих устройств и устройство для его осуществления

Изобретение относится к энергетике и может быть использовано в теплопередающих устройствах, например в ядерных энергетических установках. Изобретение заключается в том, что в устройстве для повышения теплосъема на выпуклых теплоотдающих поверхностях, содержащем верхнее закручивающее устройство,...
Тип: Изобретение
Номер охранного документа: 0002680175
Дата охранного документа: 18.02.2019
+ добавить свой РИД