×
13.01.2017
217.015.8315

Результат интеллектуальной деятельности: ПРИМЕНЕНИЕ ГИПЕРРАЗВЕТВЛЕННОГО ПОЛИЛИЗИНА В КАЧЕСТВЕ ИНГИБИТОРА ГЛИНИСТЫХ СЛАНЦЕВ

Вид РИД

Изобретение

№ охранного документа
0002601671
Дата охранного документа
10.11.2016
Аннотация: Изобретение относится к добыче нефти и газа. Технический результат - нетоксичность, биоразлагаемость ингибитора глинистых сланцев. Гиперразветвленный полилизин применяют в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа и в глубоких скважинах, особенно в качестве ингибитора глинистых сланцев в основанных на воде буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт, степень разветвления полилизина составляет от 10 до 99.9%, предпочтительно от 20 до 99%, более предпочтительно от 20 до 95%, молекулярная масса полилизина находится в диапазоне 500-10000 г/моль, предпочтительно в диапазоне 750-7500 г/моль, более предпочтительно в диапазоне 750-5000 г/моль, и особенно в диапазоне 750-1500 г/моль. 4 з.п. ф-лы, 1 ил., 4 табл., 6 пр.

Настоящее изобретение относится к применению гиперразветвленного полилизина в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа, и в глубоких скважинах.

Глинистый сланец - прекрасная непроницаемая осадочная порода, состоящая из глины и других минералов. Это - одна из наиболее распространенных горных пород, которые нужно сверлить в месторождениях нефти, чтобы добраться до нефтяного слоя. Из-за его высокого процента ионнозаряженной глины, сланцу присуща большая тенденция раздуваться от воды. Это делает его очень проблематичной горной породой в глубоких скважинах с основанными на воде буровыми глинистыми растворами. "Ингибитор глинистых сланцев" обладает функцией препятствования тому, чтобы глинистый сланец раздувался от воды.

ЕР 0634468 А1 описывает добавки для буровых глинистых растворов и способы, которые предотвращают набухание глины в подземных скважинах. В одном варианте осуществления, тригидроксиалкиламин реагирует с алкилированным галидом или растворимьм в воде четвертичным амином до получения кватернизированного тригидроксиалкиламина. Продукты реакции могут также включать конденсированные продукты реакции кватернизированных тригидроксиалкиламинов. В дополнительном варианте осуществления применяется холиновое производное. Кватернизированные продукты реакции и холиновые производные известны низкой токсичностью и хорошей совместимостью с анионными компонентами бурового глинистого раствора. Есть сообщения об улучшении реологических свойств буровых глинистых растворах и улучшении экологической совместимости и совместимости с буровыми глинистыми растворами.

US 6,484,821 В1 описывает основанный на воде буровой глинистый раствор для бурения посредством формирований, включающих водонабухаемый глинистый сланец. Он предпочтительно включает основанную на воде непрерывную фазу, утяжеляющий материал и ингибирующий набухание глинистых пород агент формулы H2N-R-{OR′}х-Y, где R и R′ каждый представляют собой алкиленовые группы, имеющие 1-6 атомов углерода и х соответствует величине от около 1 до около 25. Группа V должна быть аминной или алкоксигруппой, предпочтительно первичным амином или метоксигруппой. Ингибирующий набухание глинистых пород агент должен присутствовать в концентрации, достаточной для сокращения набухания глинистого сланца. ЕР 1257610 В1, который является параллельным с US 6,484,821 В1, более точно определяет соединение формулы H2N-СН(СН3)СН2-{ОСН2СН(СН3)}х-NH2 в качестве ингибитора глинистых сланцев, где х имеет величину меньше чем 15.

WO 2008/031806 А1 описывает нейтральные или соленого типа продукты конденсации С4-10-дикарбоновых кислот с алканоламинами, диаминами или полиалкиленаминами в качестве ингибиторов глинистых сланцев.

US 5,149,690 описывает добавки бурового глинистого раствора, которые подавляют набухание сланца в форме полиамидов и полиаминокислот как продукты реакции алифатической кислоты с алифатическим полиамином. "Полиаминокислоты", упомянутые там, структурно несравнимы с полилизином, особенно потому что у них есть свободные кислотные функции, тогда как у полилизина есть свободные аминные функции.

Химические материалы для применений в морской прибрежной зоне должны соответствовать строгим экологическим инструкциям. Они должны быть нетоксичными и биоразлагаемыми, и не должны быть биоаккумулируемыми; смотри http://www.cefas.defra.qov.uk, особенно http://www.cefas.defra.gov.uk/industry-information/offshore-chemical-notification-scheme.aspx, http://www.cefas.defraa.gov.uk/industry-information/offshore-chemical-notification-scheme/ocns-ecotoxicology-testing.aspx и http://www.cefas.defraa.gov.uk/industry-information/offshore-chemical-notification-scheme/hazard-assessment.aspx (найдено 01.06.2011).

Проблемой, которая лежала в настоящем изобретении, было обеспечить нетоксичный биоразлагаемый не-биоаккумулируемый выгодный ингибитор глинистых сланцев.

Эта задача достигается при помощи признаков независимого пункта формулы изобретения. Зависимые пункты формулы изобретения относятся к предпочтительным вариантам осуществления.

Было найдено, неожиданно, что гиперразветвленный полилизин, особенно кватернизированный гиперразветвленный полилизин, является очень хорошим ингибитором глинистых сланцев и он также является биоразлатаемым.

Настоящее изобретение обеспечено для применения гиперразветвленного полилизина в развитии, эксплуатации и завершении подземных залежей минерального масла и природного газа, и в глубоких скважинах, особенно в качестве ингибитора глинистых сланцев в основанных на воде буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт для интенсификации притока в скважине подземных залежей минерального масла и природного газа.

В контексте настоящего изобретения, родовой термин "полилизин" включает с прямой цепью, разветвленные, гиперразветвленные и дендримерные полилизины. Полилизин представляет собой продукт поликонденсации аминокислотного лизина. Полилизин может иметь следующую общую формулу (I), так как концевая ε-аминофункция молекулы более легко доступна к дополнительной конденсации, чем α-аминогруппа.

Однако α-аминогруппа также проявляет определенную реакционную способность и таким образом получают разветвленные, гиперразветвленные и даже дендримерные полилизины. В нашей заявке WO 2007/060119 А1 мы описываем синтезы, которые приводят к гиперразветвленным полилизинам.

Для определения гиперразветвленных и дендримерных полимеров, также смотри Р.J. Flory, J. Am. Chem. Soc. 1952, 74, 2718 и Н. Frey et al., Chemistry - А European Journal, 2000, 6, No. 14, 2499.

Термин "гиперразветвленный" в контексте настоящего изобретения должен быть понят в значении, что степень разветвления (СР) составляет 10-99.9%, предпочтительно 20-99%, более предпочтительно 20-95%. "Дендримерный", напротив, должен быть понят в значении, что степень разветвления составляет 99.9-100%. Эти определения соответствуют определениям согласно WO 2007/060119 А1.

Степень разветвления гиперразветвленного полилизина изобретения определяется как

СР [%]=100*(Т+Z)/(Т+Z+L),

где Т означает среднее число концевых мономерных единиц, Z означает среднее число разветвленных мономерных единиц и L означает среднее число линейных мономерных единиц. Для определения степени разветвления, смотри также Н. Prey et al., Acta Polym. 1997, 48, 30.

Молекулярная масса (Mw) гиперразветвленного полилизина изобретения находится в диапазоне 500-10000 г/моль, предпочтительно в диапазоне 750-7500 г/моль, особенно в диапазоне 750-5000 г/моль и особенно в диапазоне 750- 1500 г/моль.

Атомы азота полилизина предпочтительно кватернизованы С1-4-алкильными группами. Применяемый кватернизирующий агент, например, может быть С1-4-галоалканом, особенно бром- или йодалканом, или диметилсульфатом. Предпочтение отдают фактически полной кватернизации. Это может быть определено, например, применяя аминовое число кватернизированного полилизина, то есть такое количество КОН в мг, которое эквивалентно остающемуся аминовому содержанию 1 г полилизина. Более предпочтительно никакие свободные аминовые функции больше не присутствуют в кватернизированном полилизине.

Полилизин соответственно применяется в концентрации от 1 до 30 г/л, предпочтительно от 3 до 25 г/л и особенно от 5 до 10 г/л воды. Предпочтительно его применяют вместе с водоудерживающими средствами, модификаторами реологии, диспергаторами, разбавителями, смазками и/или другими композициями, обычно применяемыми в буровых глинистых растворах, растворах, используемых при завершении скважины, или жидкостях для воздействия на пласт.

Способность к биоразложению полилизина, применяемая в соответствии с изобретением, измеренная методом, описанным в "OECD Guidelines for Testing of Chemicals - 1992 OECD 306: BiOdegradability in Seawater, Closed Bottle Method", предпочтительно составляет, по меньшей мере, 15% после 28 дней и предпочтительно по меньшей мере 50% после 60 дней.

Настоящее изобретение теперь иллюстрировано подробно при помощи примеров, которые следуют в отношении приложенного рисунка. Рисунок показывает графическое изображение величин по вискозиметру Фэнна 35 согласно Таблице 2.

ПРИМЕРЫ

Получение полилизинов

Пример 1:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 100 г воды и 0.02 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 130°С при перемешивании, в ходе которого смесь немного пенилась. После времени реакции 5 часов, воду отгоняли при пониженном давлении (200 мбар), в ходе чего температура постепенно увеличивалась до 160°С и давление уменьшилось до 10 мбар после того, как была отогнана значительная часть воды. После 8 часов, собирали 260 г воды в виде дистиллята. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Для определения распределения молекулярной массы, продукт растворяли в воде, раствор фильтровали и анализировали ГПХ (GPC - gelpermation chromatography). ГПХ проводилась посредством комбинации колонок ОНрак SB-803 HQ и SB-804 HQ (от Shodwx) при добавлении 0.1 моль/л бикарбоната натрия при 30°С с расходом 0.5 мл/мин и полиэтиленоксидом в качестве стандарта. Для определения применяли УФ детектор, который работал при длине волны 230 нм. Значение молекулярной массы определено как Mn=1400 г/моль и Mw=4300 г/моль.

Степень разветвления (СР) была 0.35 (т.е. 35%). Она была определена способом, описанным в М. Scholl, Т.Q. Nguyen, В. Bruchmann, Н.-А Klok, J. Polym. Sci.: Part А: Polym. Chem. 45, 2007, 5494-5508.

Аминовое число (АЧ) определяли на основе DIN 53176. Однако в отличие от определенного метода DIN, он включает титрование смесью ледяной уксусной кислоты/трифторметансульфоновой кислоты и потенциометрическое определение конечной точки. Аминовое число было 278 мг КОН/г.

Пример 2:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 150 г воды и 0.1 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 150°С при перемешивании, в ходе которого смесь немного пенилась и воду отгоняли при стандартном давлении. После времени реакции 4 часа, удаление дистиллята продолжалось при пониженном давлении (400 мбар), в ходе чего температура постепенно увеличивалась до 160°С. После 8 часов, 340 г воды собирали в виде дистиллята. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Значение молекулярной массы, аминовое число и степень разветвления были определены согласно детальному описанию Примера 1. Mn=1200 г/моль и Mw=2800 г/моль; АЧ было 310 мг КОН/г и СР была 0.41 (т.е. 41%).

Пример 3:

В четырехгорлую колбу на 4 л, оборудованную мешалкой, внутренним термометром, газовой входной трубой и нисходящим холодильником с вакуумной связью и собирающим сосудом, загружали 1000 г L-лизин гидрохлорида, 219.1 г твердого гидроксида натрия, 150 г воды и 0.02 г дилаурината дибутилолова, и смесь постепенно нагревали до внутренней температуры 130°С при перемешивании, и температура постепенно увеличивалась до 150°С в ходе более чем 5 часов. Во время этого времени реакции, отгоняли 218 г воды при пониженном давлении. Давление затем уменьшали до 200 мбар и внутреннюю температуру увеличивали до 160°С, в ходе чего отгоняли еще 88 г воды. Полимер высокой вязкости выгружали горячим, выливая в алюминиевую посуду.

Значение молекулярной массы, аминовое число и степень разветвления были определены согласно детальному описанию Примера 1. Mn=660 г/моль и Mw=950 г/моль; АЧ было 379 мг КОН/г и СР была 0.57 (т.е. 57%).

Кватернизация полилизинов

Пример 1а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 1 (100.9 г), который был разбавлен в воде (100.9 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.08 ммоль/г и степень кватернизации составляет 95%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (280.9 г, содержание твердых веществ 67%).

Пример 2а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 2 (90.5 г), который был разбавлен в воде (90.5 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.00 ммоль/г и степень кватернизации составляет 100%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (242.5 г, содержание твердых веществ 70%).

Пример 3а:

В колбу на 500 мл, оборудованную мешалкой, сперва загружали полилизин из Примера 3 (70.4 г), который был разбавлен в воде (74.0 г). Постепенно дозировали диметилсульфат (1 моль, 126.1 г). Реакционную смесь перемешивали при комнатной температуре на протяжении двух дней. Преобразование (степень кватернизации) мониторили через аминовое число. После двух дней, аминовое число составляет 0.00 ммоль/г и степень кватернизации составляет 100%. Избыток диметилсульфата гидролизуют при 80°С на протяжении 6 часов. Получают коричневый раствор (287.7 г, содержание твердых веществ 64%).

Экспериментальные испытания эксплуатационных характеристик

350 мл водопроводной воды вводили в мензурку, добавляли 2.5 г ингибитора глинистых сланцев (вычисленного как сухая масса - т.е. кватернизированный или некватернизированный полилизин или предшествующий продукт уровня техники) и смесь размешивали в течение 20 минут. Раствор переносили в смесительный колпачок НВ. Добавляли 30 г Cebogel® NT (Бентонит, Cebo Holland В.V., The Netherlands) как образцовое вещество для глинистого сланца и смесь перемешивали при низкой скорости в течение 10 минут. Далее, определяли реологию по вискозиметру Фэнна и прочность геля бурового раствора.

Ингибиторы глинистых сланцев (Примеры 1-3 и Примеры 1а-3а) согласно изобретению и Сравнительные ингибиторы глинистых сланцев (Сравнительный 1-3) перечислены в Таблице 1 ниже.

Таблица 1
Образец Mn Mw АЧ Твердые в-ва [%] Образец Твердые в-ва [%]
Пример 1 1400 4300 278 100 Пример 1а 67
Пример 2 1150 2840 310 100 Пример 2а 70
Пример 3 660 948 379 100 Пример За 64
Сравн. 1 Basodrill® 3200 (ингибитор глинистых сланцев от BASF SE)
Сравн. 2 Ultrahib® (ингибитор глинистых сланцев от М-I SWACO)
Сравн. 3 Холинхлорид (BASF SE)

Результаты воспроизведены в Таблице 2 ниже и в графической форме на Фиг.1.

Таблица 2
7.14 г/л Ингибитор глинистых сланцев и 85.7 г/л Бентонит
Образец Величин по вискозиметру Фэнна 35 [Па] Прочность геля бурового раствора [Па] PV [мПа*с] YP [Па] pH
600 300 200 100 6 3
10′′ 10′
Пример 1 32 28 27 26 18 16 12 11 7 25 9.0
Пример 1а 19 15 14 12 10 10 9 18 7 12 9.0
Пример 2 19 15 14 12 12 11 10 17 8 11 9.0

Пример 2а 9 6 5 4 3 4 4 8 6 3 9.1
Пример 3 14 11 10 9 8 8 9 15 6 8 9.0
Пример 3а 6 4 3 2 2 2 2 4 4 2 9.1
Срав. 1 13 12 12 13 12 11 9 9 4 10 9.1
Срав. 2 13 14 14 14 12 9 6 5 -2 15 9.1
Срав. 3 8 6 6 5 4 4 3 3 3 5 9.1
Холостой 15 11 10 8 6 6 10 19 8 7 9.2

Реология при различных значениях рН

Экспериментальные испытания эксплуатационных характеристик на образцах согласно Примеру 2а и Сравнительному образцу 2 повторяли при различных значениях рН. Результаты воспроизведены в Таблице 3. Найдено, что величина рН затрагивает изобретательный образец (Пример 2а) намного меньше, чем Сравн. образец 2 (Ultrahib®).

Таблица 3
Образец Величин по вискозиметру Фэнна 35 [Па] Прочность геля бурового раствора [Па] PV YP pH
600 300 200 100 6 3
10′′ 10′ [мПа*с] [Па]
Пример 2a 9 6 5 4 3 4 4 8 6 3 9.0
10 7 6 5 5 5 5 8 6 4 7.0
12 9 8 7 6 7 7 12 6 6 5.0
12 10 9 7 7 7 7 8 6 7 3.0
12 8 7 6 7 7 6 13 7 5 0.0
Сравн. 2 13 14 14 14 12 9 6 5 -2 15 9.0
19 17 18 19 12 12 8 8 5 14 7.0
13 10 10 9 10 9 6 7 6 7 5.0
12 11 12 13 11 10 5 6 3 9 3.0
22 22 22 23 11 10 9 7 1 21 0.0

Способность к биоразложению

Согласно способу, описанному в "OECD Guidelines for Testing of Chemicals -1992 OECD 306: Biodegradability in Seawater, Closed Bottle Method", способность к биоразложению кватернизированного полилизина согласно Примеру 3а, Сравн. образцу 2 (Ultrahib®) и веществу, выбранному для сравнения - эталона (бензоат натрия), оценивали после 28 дней и 60 дней.

Таблица 4
Материал 28 дней 60 дней
Пример 3а 38% 52%
Сравн. 2 <10% -
Этанол 80% 70%

Результаты указывают на намного лучшую способность к биоразложению кватернизированного полилизина согласно Примеру 3а, чем Ultrahib®, коммерческий ингибитор глинистых сланцев. Кроме того, 28-дневная способность к биоразложению кватернизированного полилизина согласно Примеру 3а отвечает законодательным и нормативным требованиям.


ПРИМЕНЕНИЕ ГИПЕРРАЗВЕТВЛЕННОГО ПОЛИЛИЗИНА В КАЧЕСТВЕ ИНГИБИТОРА ГЛИНИСТЫХ СЛАНЦЕВ
Источник поступления информации: Роспатент

Показаны записи 341-350 из 657.
19.01.2018
№218.016.0974

Композиция для очистки после химико-механического полирования (после - смр), содержащая конкретное содержащее серу соединение и сахарный спирт или поликарбоновую кислоту

Очищающая композиция после химико-механического полирования (после-СМР), содержащая: (А) соединение, представляющее собой цистеин, N-ацетилцистеин, тиомочевину или их производное, (В) эритрит, (С) водную среду и (Е) по меньшей мере одно поверхностно-активное вещество, и ее применение для...
Тип: Изобретение
Номер охранного документа: 0002631870
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.09c7

Огнестойкие полиамиды со светлой окраской

Изобретение относится к термопластичным формовочным массам, к применению их для изготовления волокон, пленок, формованных изделий, таких как волокна, пленки, формованные изделия, а также к применениям соли или оксида меди (I) или серебра (I) или их смесей для изготовления формовочных масс или...
Тип: Изобретение
Номер охранного документа: 0002632010
Дата охранного документа: 02.10.2017
19.01.2018
№218.016.0a9c

Жесткие пенополиуретаны

Настоящее изобретение относится к жестким пенополиуретанам, способу их получения, а также к полиольной смеси для их получения. Жесткий пенополиуретан получают путем превращения А) органических или модифицированных органических полиизоцианатов или их смесей, В) одного или нескольких простых...
Тип: Изобретение
Номер охранного документа: 0002632198
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0aae

Способ получения катализатора для риформинга и риформинг метана

Изобретение относится к катализатору для гетерогенного катализа, который содержит по меньшей мере смешанный оксид никеля и магния и магниевую шпинель, где смешанный оксид никеля и магния обладает средним размером кристаллитов ≤100 нм, фаза магниевой шпинели обладает средним размером...
Тип: Изобретение
Номер охранного документа: 0002632197
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0bfc

Каучуковый материал с барьерным материалом из сополимеров циклоолефинов

Изобретение относится к применению сополимера для снижения газопроницаемости каучукового материала. Также описан каучуковый материал, снабженный барьерным материалом в виде сополимера, и шина, включающая каучуковый материал. Сополимер получен путем метатезисной полимеризации с раскрытием цикла...
Тип: Изобретение
Номер охранного документа: 0002632584
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0c9d

Загуститель, содержащий по меньшей мере один катионный полимер

Изобретение относится к сгущающему средству, способу его получения, к содержащей поверхностно-активные вещества кислотной композиции, включающей по меньшей мере одно сгущающее средство, применяемой в качестве кондиционера для стирки белья или жидких моющих средств, а также применение сгущающего...
Тип: Изобретение
Номер охранного документа: 0002632660
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0ca9

Реактор для окисления аммиака с внутренним фильтровальным элементом

Изобретение относится к окислению аммиака до монооксида азота и может быть использовано в химической промышленности. Реактор 10 для окисления аммиака до монооксида азота в присутствии катализатора включает корпус 11, имеющий верхнюю 12, среднюю 16 и нижнюю 14 части, фильтровальную пластину 24,...
Тип: Изобретение
Номер охранного документа: 0002632685
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0cce

Способ непрерывного получения пеноматериалов в трубах

Изобретение относится к технологии полимерных материалов и касается непрерывного изготовления изолированной трубы. Способ включает внутреннюю трубу, трубу-оболочку, слой по меньшей мере из одного полиуретана между по меньшей мере одной внутренней трубой и трубой-оболочкой и пленочный рукав...
Тип: Изобретение
Номер охранного документа: 0002632689
Дата охранного документа: 09.10.2017
19.01.2018
№218.016.0e21

Сополимеры на основе изопренола, моноэтиленненасыщенных монокарбоновых кислот и сульфокислот, способ их получения и их применение в качестве ингибиторов образования отложений в водопроводящих системах

Изобретение относится к сополимерам на основе изопренола. Сополимеры на основе изопренола включают: (a) от 5 до 40 мас.% изопренола, (b) от 5 до 93 мас.% по меньшей мере одной моноэтиленненасыщенной монокарбоновой кислоты с 3-8 атомами углерода, выбранной из акриловой кислоты и метакриловой...
Тип: Изобретение
Номер охранного документа: 0002632991
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.102e

Растворимые жидкие составы аммониевых солей хинклорака

Изобретение относится к сельскому хозяйству. Гербицидно активный растворимый жидкий (РЖ) состав содержит: A) аммониевую соль хинклорака формулы I где R, R, R и R независимо означают водород, C-С-алкил, -(CHR-CHR-Z)-H или -(CHR-CHR-CHR-CHR-Z)-H (где R, R, R и R независимо означают водород или...
Тип: Изобретение
Номер охранного документа: 0002633618
Дата охранного документа: 16.10.2017
Показаны записи 341-350 из 384.
19.01.2018
№218.016.01de

Способ получения конденсационных смол и их применение

Изобретение раскрывает способ снижения вязкости конденсационной смолы, характеризующийся тем, что в основном прореагировавшую конденсационную смолу, построенную по меньшей мере из одной, предпочтительно ровно одной мочевины, формальдегида и по меньшей мере одного, предпочтительно ровно одного...
Тип: Изобретение
Номер охранного документа: 0002629950
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0376

Обратная дисперсия, содержащая катионный полимер и стабилизирующий агент

Изобретение относится к обратной дисперсии для содержания в смягчителе для ткани. Обратная дисперсия для получения загустителей и осаждающих средств содержит: i) по меньшей мере один катионный полимер, получаемый полимеризацией: a) по меньшей одного катионного мономера и по меньшей...
Тип: Изобретение
Номер охранного документа: 0002630309
Дата охранного документа: 07.09.2017
19.01.2018
№218.016.0452

Способ добычи нефти из подземной формации

Изобретение относится к добыче нефти из подземной формации. Способ добычи нефти из подземной формации, включающий стадию нагнетания в указанную формацию водной композиции, содержащей от 0,05% до 5 мас.% на основе общего количества водной композиции поверхностно-активного вещества - карбоксилата...
Тип: Изобретение
Номер охранного документа: 0002630509
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.04e7

Способ полимеризации с обращенной фазой

Изобретение относится к способу суспензионной полимеризации с обращенной фазой с получением полимерных гранул, к устройству, подходящему для такого способа, а также к растворимым в воде или набухаемым в воде полимерным гранулам. Способ суспензионной полимеризации заключается в том, что вначале...
Тип: Изобретение
Номер охранного документа: 0002630696
Дата охранного документа: 12.09.2017
19.01.2018
№218.016.0569

Композиции пвх, обладающие высокой ударопрочностью

Изобретение относится к композиции для изготовления формованных изделий, которая содержит a) ПВХ или его рециклат, b) воск, полученный синтезом Фишера-Тропша, и c) по меньшей мере один частично окисленный полиэтиленовый воск. Композиция может содержать d) вещества-наполнители и e) другие...
Тип: Изобретение
Номер охранного документа: 0002630797
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.07af

Способ получения ацетилена и синтез-газа

Изобретение относится к способу получения ацетилена и синтез-газа путем частичного окисления углеводородов при помощи кислорода, причем первый исходный поток, содержащий один или несколько углеводородов, и второй исходный поток, содержащий кислород, предварительно нагреваются отдельно друг от...
Тип: Изобретение
Номер охранного документа: 0002631431
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.07fe

Содержащий гексаалюминат катализатор риформинга углеводородов и способ риформинга

Изобретение касается содержащего гексаалюминат катализатора, в котором присутствует содержащая гексаалюминат фаза, включающая кобальт в количестве от 2 до 15 мол.% и по меньшей мере один другой элемент, выбранный из группы, включающей лантан, барий и стронций в количестве от 2 до 25 мол.%, а...
Тип: Изобретение
Номер охранного документа: 0002631497
Дата охранного документа: 25.09.2017
19.01.2018
№218.016.0922

Композиция для химико-механического полирования (смр), содержащая белок

Изобретение относится к композиции для химико-механического полирования (СМР) и ее применению при полировании подложек полупроводниковой промышленности. Композиция содержит частицы оксида церия, белок, содержащий цистеин в качестве аминокислотной единицы, и водную среду. Композиция проявляет...
Тип: Изобретение
Номер охранного документа: 0002631875
Дата охранного документа: 28.09.2017
19.01.2018
№218.016.0943

Способ полимеризации с обращенной фазой

Изобретение относится к способу получения полимеров полимеризацией с обращенной фазой. Способ суспензионной полимеризации с обращенной фазой для получения полимерного бисера включает образование водных мономерных капель, содержащих водный раствор растворимого в воде этиленненасыщенного мономера...
Тип: Изобретение
Номер охранного документа: 0002631654
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.0955

Кватернизованные полиэтиленимины с высокой степенью кватернизации

Изобретение относится к этоксилированному полиэтиленимину общей структурной формулы (I), в которой n имеет значение, которое находится в диапазоне от 1 до 40, R выбран из группы, включающей водород, С-С-алкил и их смеси, Е означает С-С-алкильную группу, X означает подходящий растворимый в воде...
Тип: Изобретение
Номер охранного документа: 0002631860
Дата охранного документа: 27.09.2017
+ добавить свой РИД