×
13.01.2017
217.015.8308

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ДИБОРИДА ЦИРКОНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. Способ получения наноразмерного порошка диборида циркония включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода в соотношении компонентов, вес. %: диоксид циркония 10-40, борная кислота 40-80, углерод 10-20, механическую обработку полученной смеси, формование прессовки и термическую обработку-синтез по трехступенчатому температурному режиму нагрева. Изобретение обеспечивает получение наноразмерного порошка диборида циркония с высокой селективностью. 3 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония.

Применение диборида циркония в разных областях техники, а именно в приборостроении, металлургии, химическом машиностроении, ракетостроении и ядерной энергетике обусловлено его высокими физико-механическими свойствами.

Известен двухстадийный способ получения боридов тугоплавких тяжелых металлов, в том числе диборида циркония (US 3328127, опубл. 27.06.1967). На первой стадии готовят смесь, состоящую из оксида металла, углерода и соединения бора, выбранного из группы: борный ангидрид, карбид бора и борная кислота; смесь нагревают до температуры 1100-1500°C и получают сырой (технический, черновой) продукт первой стадии, содержащий борид металла и примеси. Продукт первой стадии измельчают, при необходимости анализируют и смешивают с углеродом и одним из следующих соединений: оксид металла, борный ангидрид, карбид бора или карбид металла, выбор которого обусловлен стехиометрией реакции получения на второй стадии чистого борида металла; подготовленную смесь нагревают. Температура второй стадии 1600-1850°C. На 2-й стадии используют инертный газ, подаваемый противотоком твердой фазе, для этого пригодны аргон, гелий. Особенно эффективна продувка водородом. Вторая стадия может проводиться в вакууме, т.к. протекает с небольшим газовыделением.

В результате получают продукт чистотой более 99%, содержание кислорода в нем менее 0,2%.

Недостатком известного способа является корректировка состава промежуточного продукта перед стадией получения целевого продукта. Такой сложный технологический процесс приводит к удорожанию конечного продукта.

Известен способ получения тонкодисперсного монокристаллического порошка диборида металла (RU 2087262, B22F 9/16, С01В 35/04, опубл. 20.08.1997). Сущность изобретения заключается в том, что порошок металла IV группы смешивают с бором, смесь брикетируют, воспламеняют и осуществляют синтез в режиме горения. Используют соединение, регулирующее дисперсность, в качестве которого берут фторид лития, калия, натрия или их смесь в количестве 0,81-1,96 молей на моль целевого продукта.

Недостатком известного способа является то, что использование фторида лития в качестве модификатора приводит к загрязнению конечного продукта.

Ближайшим аналогом, принятым за прототип, является способ получения диборида циркония (RU 2316470, С01В 25/00, С01В 35/04, опубл. 10.02.2008), включающий приготовление смеси диоксида циркония, борной кислоты и углерода, термическую обработку реакционной смеси в интервале температур 1100-1500°C с получением чернового продукта, его измельчение и перемешивание и термическую обработку при температуре 1600-1850°C с получением целевого продукта. Приготовленную смесь диоксида циркония, борной кислоты и углерода выдерживают при температуре 250-280°C не менее 3 часов при остаточном давлении не выше 750 Па, после чего поднимают температуру до температуры получения чернового продукта. При этом используют диоксид циркония, полученный термическим разложением распыленного водного раствора оксинитрата циркония в потоке воздуха, нагретого до состояния плазмы в высокочастотном индукционном электрическом разряде. Изобретение позволяет получить целевой продукт чистотой не менее 99,6% без корректировки состава чернового продукта.

Недостатком известного способа является то, что при его осуществлении получают порошок диборида циркония с низкой селективностью (широкое распределение частиц порошка по размерам).

Задачей заявляемого технического решения является разработка способа получения наноразмерного порошка диборида циркония.

Техническим результатом предлагаемого изобретения является получение наноразмерного порошка диборида циркония с высокой селективностью.

Изделия, полученные с использованием предлагаемого наноразмерного порошка диборида циркония обладают высокими физико-механическими свойствами: прочностью, твердостью, износостойкостью.

Указанный технический результат достигается тем, что способ получения наноразмерного порошка диборида циркония (ZrB2) включает приготовление шихты из порошков диоксида циркония, борной кислоты и углерода, формование прессовки и термическую обработку-синтез, при этом шихта содержит указанные компоненты в следующем соотношении, вес. %:

диоксид циркония 10-40
борная кислота 40-80
углерод 10-20

при этом шихту дополнительно подвергают механической обработке, а термическую обработку-синтез прессовки проводят по трехступенчатому температурному режиму нагрева:

- до температуры 235-250°C в течение 1.0 часа с выдержкой 1.5 часа,

- до температуры 1280-1300°C в течение 3.5 часа с выдержкой 4.0 часа,

- до температуры 1500±5°C в течение 2.0 часов с выдержкой 1.0 час,

затем проводят охлаждение конечного продукта вместе с печью.

Для приготовления шихты используют порошок диоксида циркония, полученного разложением водных растворов солей в плазме высокочастотного разряда.

Шихту подвергают механической обработке путем перемешивания всухую в мешалке барабанного типа в течение суток, при этом соотношение смеси порошков и мелющих тел составляет 1:2. Формования прессовки проводят при давлении 2.0-2.5 т/см.

В настоящее время существует большое количество как методов получения, так и реакций синтеза диборида циркония, которые существенно влияют на фазовый и гранулометрический состав конечного продукта.

В предлагаемом изобретении синтез диборида циркония (ZrB2) осуществляют посредством реакции восстановления смеси порошков двуокиси циркония с борной кислотой и углеродом.

Использование ультрадисперсного нанокристаллического порошка диоксида циркония, полученного разложением водных растворов солей в плазме высокочастотного разряда, в реакциях синтеза позволит получить наноразмерный порошок диборида циркония, что обеспечит его высокие технологические свойства.

Использование в качестве исходного компонента порошка борной кислоты позволит более равномерно распределить диоксид циркония в смеси путем их тщательного перемешивания на начальной стадии нагрева смеси непосредственно перед реакцией синтеза.

Синтез диборида циркония основан на восстановлении углеродом смеси двуокиси циркония с борной кислотой по химической реакции:

ZrO2+2H3BO3+5C=ZrB2+3H2O+5СО.

Количество исходных компонентов для протекания синтеза рассчитывают на основании молекулярной массы каждого химического элемента.

Приготовленную порошковую шихту перемешивают всухую в мешалке барабанного типа в течение 24 часов. Для перемешивания используют барабанную мельницу с корундовым барабаном и корундовыми мелющими телами. Соотношение смеси порошков и мелющих тел составляет 1:2.

Механическую обработку успешно используют на стадии предварительной подготовки порошков перед нагревом, проведением синтеза. Общеизвестно, что механическая обработка позволяет проводить гомогенизацию, измельчение компонентов смеси вплоть до наноразмеров, способствует появлению новых, свободных от кислорода, поверхностей, уменьшению расстояния между частицами (снижению диффузионного расстояния), накоплению дефектов и активации реагентов.

Для более эффективного протекания реакции синтеза, полученную после механической обработки порошковую смесь подвергают формованию с получением прессовки. Получение прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме.

Эксперименты показали, что оптимальным давлением формования прессовки для синтеза диборида циркония является давление 2.0-2.5 т/см2.

Спекание-синтез прессовок проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре. Нагрев до температуры 235-250°C осуществлялся в течение одного часа. Затем проводят выдержку полтора часа при этой температуре. Введение выдержки при данной температуре определялось разложением борной кислоты на борный ангидрид и воду.

В процессе такой реакции наблюдалось падение вакуума с 1×10-4 до 1×10-2 мм рт.ст., что связано с интенсивным испарением воды. Далее повышают температуру до 1280-1300°C и выдерживают 4.0 часа при этой температуре для протекания реакции синтеза диборида циркония. Известно, что температурный интервал образования диборида циркония варьируется в пределах 1273-1500°C. Дальнейший подъем температуры до 1500±5°C и выдержку при этой температуре в течение 1 часа осуществляют для полного прохождения синтеза наноразмерного порошка диборида циркония.

Исследование фазового состава полученного наноразмерного порошка диборида циркония проводилось методом рентгенофазового анализа на рентгеновском дифрактометре.

В результате синтеза, помимо наноразмерного диборида циркония, в составе конечного продукта присутствуют фазы диоксида циркония тетрагональной и моноклинной модификации, а также карбид циркония.

Пример 1

В качестве исходных материалов для получения наноразмерного порошка диборида циркония были использованы: диоксид циркония (ZrO2), полученный методом плазмохимического синтеза, углерод (вакуумная сажа), а также порошок борной кислоты. Все исходные материалы представляли собой готовые порошки.

Готовят смесь из порошков диоксида циркония 40 г, вакуумной сажи (углерод) 20 г и борной кислоты 40 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов. Для перемешивания используют барабанную мельницу с корундовым барабаном и корундовыми мелющими телами. Соотношение смеси порошков и мелющих тел составляло 1:2. После механической обработки смесь подвергают формованию с получением прессовки. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2.5 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 235°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1290°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 96, ZrO2(м.) - 2, ZrO2(т.) - 1, ZrC - 1.

Пример 2.

Готовят смесь из порошков диоксида циркония 20 г, вакуумной сажи (углерод) 15 г и борной кислоты 65 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,0 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 250°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1300°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 98, ZrO2(м.) - 1.5, ZrC - 0.5.

Пример 3.

Готовят смесь из порошков диоксида циркония 14 г, вакуумной сажи (углерод) 12 г и борной кислоты 74 г. Полученную смесь перемешивают всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,5 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 240°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1280°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 96, ZrO2(м.) - 3, ZrC - 1.

Пример 4.

Готовят смесь из порошков диоксида циркония 10 г, вакуумной сажи (углерод) 10 г и борной кислоты 80 г. Полученную смесь перемешивют всухую в мешалке барабанного типа в течение 24 часов, аналогично примеру 1. Формование прессовки проводят на гидравлическом прессе ДА-1224 в стальной пресс-форме при давлении прессования 2,0 т/см2.

Термическую обработку спекание-синтез прессовки проводят в вакуумной печи СВШ-1.25/2500 по режиму, представленному на фигуре, а именно, нагревают прессовку до температуры 235°C в течение 1.0 часа, проводят выдержку 1.5 часа, затем нагревают до температуры 1290°C в течение 3.5 часа, проводят выдержку 4.0 часа, затем снова нагревают до температуры 1500°C в течение 2.0 часов, проводят выдержку 1.0 час и проводят охлаждение диборида циркония вместе с печью. Фазовый состав после синтеза, %: ZrB2 - 97, ZrO2(м.) - 2, ZrC - 1.

В результате получают диборид циркония, содержащий не более 5% примесей и состоящий из наноразмерных частиц порошка со средним размером не более 50 нм, со среднеквадратичным отклонением не более 20 нм.


СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНОГО ПОРОШКА ДИБОРИДА ЦИРКОНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 70.
29.12.2017
№217.015.f754

Способ получения порошка вольфрамата циркония

Изобретение относится к получению порошка вольфамата циркония (ZrWO), который может быть использован для изготовления запорных элементов нефтегазового комплекса. Способ включает смешивание порошков диоксида циркония (ZrO) и оксида вольфрама (WO) в соотношении 1:2 путем механической активации с...
Тип: Изобретение
Номер охранного документа: 0002639244
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fb2c

Металлокерамический композит и способ его получения (варианты)

Изобретение относится к порошковой металлургии, в частности к спеченным конструкционным композиционным материалам на основе алюминия, используемым в различных областях промышленности, в частности в транспортных и космических сферах. Металлокерамический композит содержит алюминий и упрочняющую...
Тип: Изобретение
Номер охранного документа: 0002640055
Дата охранного документа: 26.12.2017
19.01.2018
№218.016.02b2

Способ получения металлического фидстока

Изобретение относится к PIM технологиям, а именно к способам получения металлических фидстоков. Способ включает механическое смешивание металлического порошка и связующего. При этом в качестве металлического порошка используют порошки на основе металла, выбранного из Fe, Ti, Аl, в количестве...
Тип: Изобретение
Номер охранного документа: 0002630142
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.2133

Способ получения керамических изделий сложной объемной формы

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ...
Тип: Изобретение
Номер охранного документа: 0002641683
Дата охранного документа: 19.01.2018
14.09.2018
№218.016.87f1

Способ синтеза рентгеноконтрастного поверхностного ti-ta-ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из tini сплава

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ синтеза рентгеноконтрастного поверхностного Ti-Ta-Ni сплава с аморфной или аморфно-нанокристаллической структурой на подложке из TiNi сплава, осуществляемый аддитивным методом путем многократного...
Тип: Изобретение
Номер охранного документа: 0002666950
Дата охранного документа: 13.09.2018
27.10.2018
№218.016.971c

Способ автоматического построения модели гетерогенной волокнистой внутренней структуры композиционного материала

Изобретение относится к области компьютерного проектирования и может быть использовано при решении задач дизайна внутренней структуры композиционных материалов (КМ), армированных волокнами. Cпособ автоматического построения компьютерной модели гетерогенной волокнистой внутренней структуры...
Тип: Изобретение
Номер охранного документа: 0002670922
Дата охранного документа: 25.10.2018
06.12.2018
№218.016.a3f7

Экструдируемый антифрикционный композит на основе сверхвысокомолекулярного полиэтилена

Изобретение относится к экструдируемому антифрикционному композиту на основе сверхвысокомолекулярного полиэтилена и может быть использовано для получения антифрикционных изделий в узлах трения в машиностроении и медицине с применением аддитивных технологий. Композит содержит...
Тип: Изобретение
Номер охранного документа: 0002674019
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a4c1

Иерархически армированный гетеромодульный экструдируемый твердосмазочный нанокомпозит на основе свмпэ и способ его получения

Изобретение относится к области получения высокопрочных, износостойких и экструдируемых полимерных нанокомпозитов на основе сверхвысокомолекулярного полиэтилена для трибоузлов, в том числе работающих в экстремальных условиях Крайнего Севера. Предложен иерархически армированный гетеромодульный...
Тип: Изобретение
Номер охранного документа: 0002674258
Дата охранного документа: 06.12.2018
19.12.2018
№218.016.a8c0

Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки

Группа изобретений относится к получению металлического порошка на основе нано- и микрочастиц. Способ включает электрический взрыв металлической проволоки в реакторе и сепарацию частиц по размерам. В реакторе обеспечивают принудительную циркуляцию газовой среды при скорости газового потока на...
Тип: Изобретение
Номер охранного документа: 0002675188
Дата охранного документа: 17.12.2018
20.02.2019
№219.016.c40c

Способ нанесения теплозащитного покрытия

Изобретение относится к вакуумной технологии нанесения теплозащитных покрытий на изделия из меди и может быть использовано в авиа- и машиностроении и других областях. Способ нанесения теплозащитного покрытия включает размещение изделия в вакуумной камере. Затем осуществляют наноструктурирование...
Тип: Изобретение
Номер охранного документа: 0002467878
Дата охранного документа: 27.11.2012
Показаны записи 41-50 из 54.
29.12.2017
№217.015.fb2c

Металлокерамический композит и способ его получения (варианты)

Изобретение относится к порошковой металлургии, в частности к спеченным конструкционным композиционным материалам на основе алюминия, используемым в различных областях промышленности, в частности в транспортных и космических сферах. Металлокерамический композит содержит алюминий и упрочняющую...
Тип: Изобретение
Номер охранного документа: 0002640055
Дата охранного документа: 26.12.2017
19.01.2018
№218.016.02b2

Способ получения металлического фидстока

Изобретение относится к PIM технологиям, а именно к способам получения металлических фидстоков. Способ включает механическое смешивание металлического порошка и связующего. При этом в качестве металлического порошка используют порошки на основе металла, выбранного из Fe, Ti, Аl, в количестве...
Тип: Изобретение
Номер охранного документа: 0002630142
Дата охранного документа: 05.09.2017
13.02.2018
№218.016.2133

Способ получения керамических изделий сложной объемной формы

Изобретение относится к технологии получения керамических изделий марок ВК-95 и ВК-94 и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления керамических изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах. Способ...
Тип: Изобретение
Номер охранного документа: 0002641683
Дата охранного документа: 19.01.2018
29.05.2018
№218.016.54ac

Способ изготовления керамической мембраны

Изобретение относится к технологии получения керамической мембраны на пористом носителе, в частности на подложках из оксида алюминия или оксида циркония. Способ изготовления керамической мембраны, включающий получение пористой керамической подложки, нанесение на ее поверхность слоев суспензии...
Тип: Изобретение
Номер охранного документа: 0002654042
Дата охранного документа: 15.05.2018
20.02.2019
№219.016.bcb8

Способ изготовления прочной керамики

Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления деталей, работающих при механических нагрузках. Техническим результатом изобретения является создание прочной керамики, содержащей диоксид циркония со структурой, имеющей различный...
Тип: Изобретение
Номер охранного документа: 0002286316
Дата охранного документа: 27.10.2006
20.02.2019
№219.016.c06c

Способ изготовления керамических изделий

Изобретение относится к технологии получения керамических материалов, в частности к способам обработки керамики высокотемпературным деформированием, и может быть использовано в области электротехники, в машиностроении, для изготовления высокоплотных керамических изделий, которые работают при...
Тип: Изобретение
Номер охранного документа: 0002304566
Дата охранного документа: 20.08.2007
19.04.2019
№219.017.31c6

Способ получения керамического градиентного материала

Изобретение относится к порошковой металлургии, в частности к изготовлению градиентых керамических материалов на основе диоксида циркония. Высокодисперсный порошок в виде пересыщенных твердых растворов на основе ZrO с растворенными в нем компонентами, выбранными из группы оксидов-стабилизаторов...
Тип: Изобретение
Номер охранного документа: 0002454297
Дата охранного документа: 27.06.2012
13.06.2019
№219.017.8126

Способ получения пористой керамики с бимодальным распределением пористости

Изобретение относится к технологии получения пористого материала из ультрадисперсного оксидного керамического порошка и добавок-порообразователей и может быть использовано для получения фильтрующих керамических материалов или материалов медицинского назначения. Технический результат - получение...
Тип: Изобретение
Номер охранного документа: 0002691207
Дата охранного документа: 11.06.2019
09.08.2019
№219.017.bd3a

Способ реконструкции сложных дефектов челюстно-лицевой области

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии, и предназначено для использования при реконструкции сложных дефектов челюстно-лицевой области. Осуществляют замещение дефекта костных тканей эндопротезом, выполненным из реконструктивного материла, на основе данных...
Тип: Изобретение
Номер охранного документа: 0002696533
Дата охранного документа: 02.08.2019
02.10.2019
№219.017.cebf

Способ аддитивного производства изделий из титановых сплавов с функционально-градиентной структурой

Изобретение относится к аддитивному производству изделий с функционально-градиентной структурой из титановых сплавов. Способ включает изготовление, по меньшей мере, части изделия путем подачи первой проволоки и второй проволоки в ванну расплава с обеспечением плавления высокоэнергетическим...
Тип: Изобретение
Номер охранного документа: 0002700439
Дата охранного документа: 17.09.2019
+ добавить свой РИД