×
13.01.2017
217.015.8237

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях. Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя заключается в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, при этом дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту. Технический результат - повышение информативности способа диагностики сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя. 5 ил.

Изобретение относится к области ускорительной техники, а именно к способам диагностики проводки импульсных сильноточных релятивистских пучков электронов (ИСРПЭ) в мощных линейных ускорителях.

Известно, что при проводке (ускорении и/или транспортировке) в вакуумном тракте линейного индукционного ускорителя ИСРПЭ цилиндрического или трубчатого поперечного сечения в ИСРПЭ развиваются поперечные высокочастотные неустойчивости. Они возникают из-за нарушения равновесного состояния ИСРПЭ, например, вследствие периодического воздействия электрических и магнитных полей, формирующихся в повторяющейся протяженной структуре ускорительного тракта, либо - их асимметрии относительно продольной оси тракта при наличии начального радиального смещения ИСРПЭ или в результате взаимной несоосности ускорительных дрейфовых трубок и др. При этом возникают поперечные направлению проводки пучка колебания электронов, приводящие к радиальному расширению ИСРПЭ с дальнейшей потерей части его электронов на стенках тракта. В свою очередь рассеянные на стенки тракта электроны обусловливают вторичную эмиссию электронов, которые могут шунтировать ускорительные зазоры и вызывать поверхностные пробои ускорительных трубок, что в итоге приводит к снижению темпа ускорения ИСРПЭ.

Из области техники известен способ диагностики ИСРПЭ в вакуумном тракте линейного индукционного ускорителя RADLAC-II (статья «MECHANICAL AND MAGNETIC ALIGNMENT TECHNIQUES FOR THE RADLAC-II LINEAR ACCELERATOR», D.J. Armistead, D.L. Bolton, and M.G. Mazarakis, РАС1987), включающий регистрацию амплитуды и формы импульсов тока ИСРПЭ в процессе его проводки с помощью индукционных датчиков тока (поясов Роговского), расположенных по длине и внутри ускорительного тракта. Анализируя от датчика к датчику амплитудно-временные изменения импульсов тока ИСРПЭ, определяют уровни электронных потерь пучка и области попадания потерянных электронов на стенки тракта. По полученным данным определяют возможные причины нарушения равновесного состояния ИСРПЭ.

Недостатком предложенного способа является ограниченная информативность из-за низкого пространственного разрешения, связанного с малым количеством датчиков тока. Увеличение количества датчиков тока внутри тракта усложняет его конструкцию и затрудняет его техническое обслуживание.

Наиболее близким аналогом заявляемого способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя является способ, описанный в статье («Transport dynamics of a 19 MeV, 700 kA electron beam in a 10.8 m gas cell», T.W.L. Sanford, et. al, Journal of Applied Physics 70, 1778 (1991); doi: 10.1063/1.349493), включающий регистрацию амплитуды и формы импульсов тока пучка с помощью индукционных датчиков тока, а также дополнительную регистрацию интегральных значений дозы тормозного излучения от рассеянных на стенках тракта электронов из ИСРПЭ, с помощью набора точечных термолюминесцентных дозиметров (ТЛД). ТЛД используются в большем количестве, чем датчики тока и распределены вдоль вакуумного тракта с внешней его стороны. Последующий сопоставительный анализ полученной информации с датчиков тока и дозиметров дает более точную пространственную локализацию области потерь электронов на стенках тракта и их уровень с каждого датчика. Кроме того, ТЛД чувствительны к потерям электронов с высокой энергией и информируют об электронных потерях ИСРПЭ, которые плохо идентифицируются на фоне паразитных вторичных электронных потоков, шунтирующих высоковольтную структуру ускорительного тракта.

Недостатком данного устройства является его ограниченная информативность из-за невозможности определить изменение уровней потерь электронов в течение длительности импульса тока. Кроме того, для получения дозиметрических данных с помощью ТЛД требуется дополнительное время, связанное с их установкой в зонах с повышенным тормозным излучением, опасным для здоровья человека.

Задачей предлагаемого изобретения является повышение информативности способа диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя за счет дополнительного использования рядом с ТЛД сцинтилляционных датчиков, а также - снижение трудозатрат и сокращение времени, необходимого для диагностики пучка благодаря использованию сцинтилляционных датчиков вместо ТЛД после согласования их показаний (калибровки).

Техническим результатом предлагаемого изобретения является возможность проведения как пространственного, так и временного, в течение длительности импульса тока пучка, контроля изменения уровней электронных потерь ИСРПЭ на стенках ускорительного тракта.

Технический результат достигается тем, что в способе диагностики ИСРПЭ в тракте линейного индукционного ускорителя, заключающемся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью ТЛД, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, новым является то, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с ТЛД, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи ТЛД, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока, и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь ИСРПЭ на стенках тракта в течение длительности импульса тока в процессе прохождения ИСРПЭ по ускорительному тракту.

Дополнение измерительных средств набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением позволяет найти моменты временных изменений импульсов ТИ, связанные с электронными потерями ИСРПЭ на стенках тракта и с нарушениями равновесного состояния ИСРПЭ вдоль по тракту. Применение сцинтилляционных датчиков необходимо для фиксации моментов возникновения (завершения) генерации тормозного излучения (ТИ), что важно для конкретизации причин нарушения проводки ИСРПЭ.

Расположение сцинтилляционных датчиков рядом с ТЛД необходимо для калибровки датчиков по интегральной дозе. В период между калибровками использование ТЛД в экспериментах не требуется, что значительно сокращает время измерений. Кроме того, выходные световые сигналы со сцинтилляционных датчиков передаются на расстояния 10÷50 м по оптическим кабелям без значительного ослабления, а также электромагнитных помех, как правило, сопровождающих передачу сигналов по радиочастотным кабелям с детекторов мощности ТИ и присущих конструкциям мощных линейных ускорителей электронов.

Результаты измерений импульсов со сцинтилляционных детекторов сопоставляются с результатами измерений импульсов с токовых датчиков по амплитуде и форме для получения информации об изменении уровней электронных потерь ИСРПЭ на стенках тракта в процессе его прохождения по ускорителю.

Данный способ диагностики ИСРПЭ электронов в тракте мощного линейного ускорителя реализуется на линейном индукционном ускорителе ЛИУ-30, схематически показанном на фиг. 1, где:

1 - инжектор пучка электронов;

2 - пучок электронов;

3 - ускоряющая система;

4 - выводное устройство пучка;

5 - мишенный узел;

6 - датчики тока;

7 - ТЛД;

8 - сцинтилляционные датчики (сцинтилляторы);

9 - регистраторы импульсов с датчиков тока;

10 - регистраторы импульсов со сцинтилляционных датчиков.

На фиг. 2 и фиг. 4 приведены осциллограммы импульсов с датчиков тока в двух разных экспериментах на ЛИУ-30, на фиг. 3 и фиг. 5 приведены соответствующие им осциллограммы импульсов сцинтилляционных детекторов и дозовые значения ТЛД.

ИСРПЭ 2 формируется в инжекторе 1 ЛИУ-30, ускоряется при прохождении ускоряющей системы 3. Далее, перемещаясь по выводному устройству 4, пучок попадает на мишенный узел 5. Из-за поперечных неустойчивостей пучка возникают его поперечные колебания, которые нарушают динамику распространения пучка, изменяют форму импульса тока пучка, приводят к его радиальному расширению с потерей части электронов пучка 2 на стенках тракта.

Датчики тока 6 пучка (секционные индукционные датчики тока), в количестве 10 штук, устанавливаются внутри и вдоль тракта с шагом 2 м. Сцинтилляторы 8 и ТЛД 7 (32 шт.) располагаются с внешней стороны тракта с шагом 0,66 м на том же азимутальном угле, что и датчики тока.

В сцинтилляционных детекторах используются сцинтилляционные датчики с наносекундным быстродействием на основе полистирола с размерами 20×10×5 мм и пластмассовые оптические кабели, передающие свет сцинтиллятора на оптоэлектронные преобразователи, которые подключаются к входам осциллографов 10. ТЛД типа ИС-7, используемые по методике ИКС (индивидуальный контроль с помощью стекол), служат для калибровки сцинтилляционных детекторов по дозе. Они имеют размеры 10×10×1 мм, которые в 10 раз меньше габаритов сцинтилляторов и располагаются в контактной близости с ними.

Формы импульсов с датчиков тока и формы импульсов с выхода сцинтилляционных детекторов регистрируются быстродействующими цифровыми осциллографами TDS3054 (9 и 10).

По фиг. 2 и 4 видно, что токи, соответствующие передней части пучка в двух экспериментах - приближенно одинаковы, однако высокочастотные колебания на задней части импульса тока пучка во втором эксперименте значительно интенсивнее. По степени искажения формы импульса тока можно сказать, что во втором случае ИСРПЭ существенно изменил свое равновесное состояние. По фиг. 3 и 5 видно, что значения доз ТЛД и соответственно потери пучка во втором случае значительно больше. Соответственно сцинтилляционный импульс во втором эксперименте (фиг. 5) существенно отличается по форме и превосходит предыдущий по интегральному значению в ~1.5 раза. Доза ТЛД во втором эксперименте больше примерно во столько же раз. Известно, что интегральное значение сцинтилляционного импульса пропорционально дозе, поэтому сцинтилляционные детекторы можно калибровать по дозе с помощью ТЛД и в дальнейшем сцинтилляционные детекторы могут заменять ТЛД. Характерный «горб» на осциллограмме сцинтилляционного импульса, соответствующий задней части пучка (фиг. 5), коррелирует с появлением высокочастотных радиальных колебаний ИСРПЭ, при которых происходит рассеяние электронов на стенки тракта вблизи расположения сцинтилляционных детекторов.

Таким образом, по амплитуде и форме импульса сцинтилляционного детектора можно судить об изменении уровня потерь ИСРПЭ на стенках в процессе его прохождения по тракту (по наличию характерного «горба»). О величине тока пучка можно судить по форме импульсов с датчиков тока. Анализ осциллограмм со сцинтилляционных детекторов, расположенных в разных точках тракта, позволяет определить наличие отклонения пучка от траектории в данном сечении тракта и степень этого отклонения. Введение сцинтилляционных детекторов позволяет заменить усложняющие конструкцию тракта и затрудняющие его техническое обслуживание датчики тока во многих сечениях тракта. Применение способа диагностики проводки пучка позволяет контролировать изменение уровней электронных потерь ИСРПЭ, на основе которых можно судить о возможных причинах нарушения равновесного состояния пучка (например, отклонения от нормальной работы ускоряющей системы). Особенности форм осциллограмм фиг. 4 и фиг. 5 могут быть связаны с нарушением темпа ускорения электронного пучка по причине отклонения в работе системы синхронизации ускорительных блоков.

Способ диагностики импульсного сильноточного релятивистского пучка электронов в тракте линейного индукционного ускорителя, заключающийся в том, что регистрируют амплитуду и форму импульсов тока пучка с помощью индукционных датчиков тока и интегральные значения доз тормозного излучения на стенках тракта с помощью термолюминесцентных дозиметров, превышающих по количеству датчики тока и установленных вдоль по тракту, анализируя полученную информацию, судят об изменении равновесного состояния пучка, связанного с амплитудно-временными изменениями импульсов тока пучка, и определяют области и уровни электронных потерь пучка на стенках тракта, отличающийся тем, что дополняют измерительные средства набором сцинтилляционных детекторов тормозного излучения с наносекундным разрешением, при этом располагают их рядом с термолюминесцентными дозиметрами, регистрируют амплитуду и форму импульсов со сцинтилляционных детекторов, калибруют их по интегральной дозе при помощи термолюминесцентных дозиметров, сравнивают амплитуды и формы импульсов со сцинтилляционных детекторов и с датчиков тока и по результатам сопоставительного анализа дополнительно судят об изменении уровней электронных потерь импульсного сильноточного релятивистского пучка электронов на стенках тракта в течение длительности импульса тока в процессе прохождения пучка по ускорительному тракту.
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
СПОСОБ ДИАГНОСТИКИ ИМПУЛЬСНОГО СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ПУЧКА ЭЛЕКТРОНОВ В ТРАКТЕ ЛИНЕЙНОГО ИНДУКЦИОННОГО УСКОРИТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 798.
25.08.2017
№217.015.b4b9

Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности и устройство его управления

Группа изобретений относится к лазерной технике. Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности содержит формирователь импульсов и излучатель с электрооптическим затвором, снабженным драйвером, снабжен управляющим микроконтроллером,...
Тип: Изобретение
Номер охранного документа: 0002614084
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b583

Устройство для хранения и выдачи предметов

Изобретение относится к устройствам, используемым в охранных системах для хранения и выдачи предметов, подлежащих особой сохранности, например ключей, носителей информации, драгоценностей, и может быть использовано в охранных системах объектов с повышенными требованиями к безопасности....
Тип: Изобретение
Номер охранного документа: 0002614198
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b72d

Способ воспламенения порохового заряда в баллистической установке и установка для его осуществления

Группа изобретений относится к испытательной технике. Способ воспламенения порохового заряда включает размещение модулей порохового заряда, его воспламенение. Пороховой заряд выполняют состоящим из двух разнесенных модулей. Первый модуль устанавливают вплотную к отверстию, предназначенному для...
Тип: Изобретение
Номер охранного документа: 0002614440
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b825

Сверхширокополосный генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В...
Тип: Изобретение
Номер охранного документа: 0002614986
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bbd5

Способ санкционирования доступа и устройство для его осуществления

Предложен способ санкционирования доступа. В нём каждому объекту с электронным замком присваивают учетный номер. При этом предварительно формируют последовательность неповторяющихся порядковых номеров, из которых путем криптопреобразования получают последовательность преобразованных номеров,...
Тип: Изобретение
Номер охранного документа: 0002615945
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bc18

Способ получения сорбента на основе полимерного гидрогеля

Изобретение относится к способу получения гидрогелей, которые могут использоваться в качестве сорбентов для связывания катионов металлов, в частности в процессах утилизации жидких радиоактивных отходов. Способ получения сорбента на основе полимерного гидрогеля заключается в сшивке макромолекул...
Тип: Изобретение
Номер охранного документа: 0002616064
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bc1b

Детонационный триод

Изобретение относится к устройствам для инициирования детонации, а именно к детонирующим логическим устройствам, предназначенным для управляемой передачи детонации и инициирования взрывных зарядов от одного или более инициаторов. Технический результат - повышение надежности и безопасности...
Тип: Изобретение
Номер охранного документа: 0002616044
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bc50

Снаряд для стрелкового оружия

Изобретение относится к конструкции стрелковых боеприпасов, содержащих реакционные материалы и обладающих повышенным запреградным действием. Снаряд для стрелкового боеприпаса состоит из корпуса в виде стакана из тяжелого прочного металла, например сталь, вольфрам, с открытым передним торцом,...
Тип: Изобретение
Номер охранного документа: 0002616034
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bd6d

Оптическое устройство

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях. Устройство содержит излучатель, приемный блок, оптическая ось которого сопряжена с осью луча,...
Тип: Изобретение
Номер охранного документа: 0002616341
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.be34

Способ получения смесевого пластичного взрывчатого вещества

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого...
Тип: Изобретение
Номер охранного документа: 0002616729
Дата охранного документа: 18.04.2017
Показаны записи 161-170 из 288.
25.08.2017
№217.015.b4b9

Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности и устройство его управления

Группа изобретений относится к лазерной технике. Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности содержит формирователь импульсов и излучатель с электрооптическим затвором, снабженным драйвером, снабжен управляющим микроконтроллером,...
Тип: Изобретение
Номер охранного документа: 0002614084
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b583

Устройство для хранения и выдачи предметов

Изобретение относится к устройствам, используемым в охранных системах для хранения и выдачи предметов, подлежащих особой сохранности, например ключей, носителей информации, драгоценностей, и может быть использовано в охранных системах объектов с повышенными требованиями к безопасности....
Тип: Изобретение
Номер охранного документа: 0002614198
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b72d

Способ воспламенения порохового заряда в баллистической установке и установка для его осуществления

Группа изобретений относится к испытательной технике. Способ воспламенения порохового заряда включает размещение модулей порохового заряда, его воспламенение. Пороховой заряд выполняют состоящим из двух разнесенных модулей. Первый модуль устанавливают вплотную к отверстию, предназначенному для...
Тип: Изобретение
Номер охранного документа: 0002614440
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b825

Сверхширокополосный генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В...
Тип: Изобретение
Номер охранного документа: 0002614986
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bbd5

Способ санкционирования доступа и устройство для его осуществления

Предложен способ санкционирования доступа. В нём каждому объекту с электронным замком присваивают учетный номер. При этом предварительно формируют последовательность неповторяющихся порядковых номеров, из которых путем криптопреобразования получают последовательность преобразованных номеров,...
Тип: Изобретение
Номер охранного документа: 0002615945
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bc18

Способ получения сорбента на основе полимерного гидрогеля

Изобретение относится к способу получения гидрогелей, которые могут использоваться в качестве сорбентов для связывания катионов металлов, в частности в процессах утилизации жидких радиоактивных отходов. Способ получения сорбента на основе полимерного гидрогеля заключается в сшивке макромолекул...
Тип: Изобретение
Номер охранного документа: 0002616064
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bc1b

Детонационный триод

Изобретение относится к устройствам для инициирования детонации, а именно к детонирующим логическим устройствам, предназначенным для управляемой передачи детонации и инициирования взрывных зарядов от одного или более инициаторов. Технический результат - повышение надежности и безопасности...
Тип: Изобретение
Номер охранного документа: 0002616044
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bc50

Снаряд для стрелкового оружия

Изобретение относится к конструкции стрелковых боеприпасов, содержащих реакционные материалы и обладающих повышенным запреградным действием. Снаряд для стрелкового боеприпаса состоит из корпуса в виде стакана из тяжелого прочного металла, например сталь, вольфрам, с открытым передним торцом,...
Тип: Изобретение
Номер охранного документа: 0002616034
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bd6d

Оптическое устройство

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях. Устройство содержит излучатель, приемный блок, оптическая ось которого сопряжена с осью луча,...
Тип: Изобретение
Номер охранного документа: 0002616341
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.be34

Способ получения смесевого пластичного взрывчатого вещества

Изобретение относится к области производства взрывчатых веществ и может быть использовано для получения пластичных ВВ с уменьшенными критическими размерами детонации, применяющихся для изготовления малогабаритных взрывных устройств различного назначения. Описан способ получения смесевого...
Тип: Изобретение
Номер охранного документа: 0002616729
Дата охранного документа: 18.04.2017
+ добавить свой РИД